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The B1 storyline also describes a convergent, more equitable world, and has 
the same population scenario as the A1 storyline: however, rapid changes in 
economic structures towards a service and information economy are assumed, 
with reductions in material intensity, and the introduction of clean and resource-
efficient technologies. Global solutions are found to economic, social and 
environmental sustainability. 

The High, Medium, and Low emission scenarios in the UKCP09 report correspond 
to the A1F1, A1B and B1 SRES scenarios. The High and Low emission scenarios are 
the same as those of the same name used in UKCIP02. They span almost the full 
range of SRES scenarios, with cumulative (2000–2100) CO2 emissions of 2189 GtC 
and 983 GtC respectively. SRES A2 and B2 storylines, with higher, continuously 
increasing population scenarios (to 15.1 and 10.4 billion in 2100 respectively), are 

Figure A1.1: The SRES storylines/emissions 
families.
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not used in UKCP09, as the population assumed in the A2 storyline is significantly 
higher than the high end of current projections.

Extreme high or low emissions scenarios, for example very high rates of fossil 
fuel combustion or strong mitigation in response to concerns over climate 
change, are also not considered in the projections available from UKCP09. The 
UKCP09 Low emissions scenario (SRES B1) does, according to some models, result 
in approximate stabilisation of CO2 concentrations between about 500 and 600 
ppm. However, when the full (ocean and land) climate–carbon cycle feedback is 
included, as is done in UKCP09, then the CO2 concentrations will vary over a wide 
range. 

A1.2 Relevant work since the publication of SRES

The IPCC AR4 (2007) assessment, Working Group 1 Chapter 10 and Working 
Group 3 Chapter 3, reviewed the new data on demographics, economic trends 
and energy use and concluded that the emission ranges from scenarios that do 
not include climate policy that were reported before and after the SRES study 
in 2000 have not changed appreciably: hence they are still used as the basis for 
the 2007 IPCC assessment and for the UKCP09 projections. However, population 
scenarios produced by some major institutions (van Vurren and O’Neill, 2006) are 
now lower than they were in 2000, specifically for Asia, Africa, Latin America and 
the Middle East, which more than compensates for the slightly higher population 
projections for OECD countries. As a result, the population projections that are 
considered within the emission scenarios assumed as the basis of the UKCP09 
projections, with a population of 7.1 billion in 2100, are some 1.3–1.9 billion 
below the current central estimates of 8.4–9.0 billion (Lutz et al. 2004; UN, 2004; 
Fisher et al. 2006). However, van Vurren and O’Neill (2006) also note that the 
projection of global GDP growth for the A1 family is higher (3.1% per yr) than 
the ranges (1.2–2.5%/yr) of current projections (USDoE, 2003; IEA, 2004). 

The full SRES range of emission projections is actually still considered to be 
representative of the range of likely outcomes, because in studies which have 
incorporated the revised lower population estimates, emissions have not 
decreased because the reduction has been partly compensated for by changes 
in other drivers such as energy intensity (which has declined slower than 
anticipated) and the rate of technological change (which has also been slower 
than expected). These is turn are due to less rapid turn-over of capital stock in the 
energy sector, and slow penetration of new and advanced technologies due to 
lack of investments (Grubler et al. 2004). Other studies have not yet been revised 
to take account of these lower projections.

In the SRES scenarios used here, as well as in subsequent studies of future emission 
pathways, baseline land-related greenhouse gas emissions remain important 
throughout the 21st century. They include continued, although slowing, land use 
change (e.g. deforestation) and also increased use of high-emitting agricultural 
intensification practices due to the anticipated rising global food demand 
and shifts in dietary preferences towards meat consumption. More recent 
scenarios (e.g. Soares-Filho et al. 2006) suggest significantly more rapid rates of 
deforestation than those in the SRES scenarios, which would act to enhance the 
climate forcing and potentially make climate change more rapid. 

There has been a debate on the form of exchange rates, market exchange rates or 
purchasing power parities, used in the SRES (2000) simulations. However, evidence 
from the limited number of new studies indicates that the choice of metric for 
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GDP does not appreciably affect the projected emissions, when metrics are used 
consistently, with the differences being small compared to other uncertainties 
such as rates of technological change. This is because when the exchange rate 
type is changed, the emission intensities change in a compensating manner when 
the GDP numbers change (van Vurren and O’Neill, 2006; Fisher et al. 2007). 

Raupach et al. (2007) have compared recent global carbon dioxide emissions, 
estimated by two US government groups, EIA (Energy Information Administration) 
and CDIAC (Carbon Dioxide Information Analysis Center), with those assumed in 
the SRES scenarios. They find that CO2 emissions increased by more than 3%/
yr between 2000 and 2004, compared to 1.1%/yr for 1990–1999. This rate of  
3%/yr is faster than that in any of the SRES scenarios, and it might be inferred from 
this that the latter underestimate future emissions, and this would mean that 
the UKCP09 projections are also an underestimate. However, there are obvious 
dangers in using comparisons over such a short period to draw conclusions about 
emissions over the next decades and century. 

Some guidance on using the uncertainty associated with the three UKCP09 
emissions scenarios is provided in the UKCP09 User Guidance. 
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CLIMATE
PROJECTIONSUK 

The UKCP09 probabilistic projections inevitably depend upon 

a number of assumptions in the methodology used to produce 

them. Sensitivity tests can be performed on elements of the  

methodology to assess the robustness of the projections to  

reasonable variations in key assumptions. It should be noted that 

not all variables and assumptions can be tested at this time, but 

further work is planned.

A2.1 Introduction

This Annex supplements the description of our methodology for probabilistic 
climate projection, given in Chapter 3. Here, we describe a number of sensitivity 
tests designed to assess the robustness of the projections to reasonable variations 
in some of our main assumptions. We also give examples showing how the 
spread of outcomes implied by our probabilistic projections arises from different 
components of the method. The material described in this Annex necessarily 
assumes a similar level of scientific and technical understanding to Chapter 3; 
however, we summarise key conclusions in Section 4, omitting technical detail.

The key point is that while the UKCP09 probabilistic projections provide estimates 
of uncertainties in future climate change, it is also inevitable that the probabilities 
are themselves uncertain. If the uncertainties in the probabilities are sufficiently 
small compared with the uncertainties quantified by the probabilities, then 
the UKCP09 results are likely to be sufficiently reliable to be used in support 
of assessments of impacts, vulnerability or adaptation. This Annex provides 
examples of the type of information which will help users judge the robustness 
of the projections in the context of their specific applications. It should not be 
assumed that the precise levels of robustness shown in this Annex apply to all 
UKCP09 variables, time periods and spatial locations. Further examples of our 
sensitivity tests will therefore be made available on the UKCP09 website (see 
http://ukclimateprojections.defra.gov.uk). Note that user assessments of the 
reliability of the UKCP09 projections will also depend on the degree of precision 
required on a case-by-case basis, compared with other uncertainties that users 
would have to contend with (for example in greenhouse gas emissions, impacts 
models, adaptation costs, government policy, local planning decisions, etc.). 

Annex 2: Sensitivity of UKCP09 
projections to key assumptions

David Sexton and James Murphy, 
Met Office Hadley Centre
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Therefore, while we can assess the robustness of the probabilistic projections 
based on tests of the underlying scientific methodology, decisions on their utility 
in user applications depend on additional factors beyond the scope of climate 
science. 

Chapter 3 describes how our probabilistic projections are derived. Essentially, 
we produce a large number of projections of historical and future climate 
using perturbed variants of a number of configurations of the HadCM3 climate 
model, designed to sample major known uncertainties in relevant climate system 
processes. Different projections are weighted according to how well their his-
torical components fit a set of observations, and we then integrate over the 
weighted projections to produce probabilities for alternative realisations of 
21st century climate. The probabilities are therefore Bayesian in their nature, 
representing the relative credibility of different future outcomes, conditioned 
on a mixture of expert judgements, model and observational data and their 
associated uncertainties (the statistical framework used to produce them is 
described in Chapter 3). However, probabilistic climate projections inevitably 
depend not only on the data, but also on the statistical method used and the 
choices required by that method (see Chapter 3). Plausible variations in those 
choices will alter the projections to some extent, and this gives rise to uncertainties 
in the specified probabilities, as pointed out above. Henceforth, for clarity, we 
use the term sensitivity to refer to variations in the UKCP09 probability values 
in responses to the exploration of alternative methodological assumptions, 
and uncertainty to refer to the spread of outcomes quantified by the UKCP09 
probabilities themselves. 

A2.2 Sensitivity studies

Methodological choices generating sensitivities in the probabilistic projections 
fall into several categories:

i. Some assumptions are currently untestable (see discussion in Section 3.3).
This is an inevitable consequence of any probabilistic projection method,
due to limitations in scientific understanding, modelling capability, or
computational resource. For example, we neglect the possibility of non-linear
interactions between uncertainties in regional climate feedbacks arising
from atmospheric, carbon cycle, sulphur cycle and ocean processes, because
it is not yet feasible to run large ensembles of climate model simulations in
which all of these processes are simultaneously perturbed.

ii. Some choices are based on a mixture of scientific reasoning and feasibility.
For instance, we aim to use historical observations of a wide range of
different climate variables to constrain our projections, because this reduces
the risk that a model variant could be given a high weight by achieving a
good historical simulation of a limited set of variables through a chance
compensation of errors in its detailed representations of physical processes.
We achieve this by using many thousands of pieces of observational
information (consisting mainly of multiyear averages of global fields of
several different variables in different seasons of the year), while noting
limitations imposed by compromises in our experimental design, and by
lack of availability of data from other climate models. In principle, we could
test the impact of withholding some of the observational variables used in
our analysis. However each of the observables (Section 3.2.9) was chosen
to provide information about a different aspect of historical climate, and
as such provides information with a significant degree of independence
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from that provided by the other variables. Removing one or more of these 
would therefore significantly degrade our ability to provide an observational 
constraint which effectively discriminates between physically plausible and 
implausible model variants, so the results of such a sensitivity test would be 
less credible than the UKCP09 results. We therefore do not investigate such 
a test here. 

iii. Other choices are subjective. These can be divided into three groups, explained
in this paragraph, and in (iv) and (v) below. First, there are a number of choices
in our procedures which require expert judgement, but can be supported by
diagnostic checks. These include, for example, choices between alternative
statistical regression models in the emulation, timescaling and downscaling
techniques described in Chapter 3. Another example relates to the use of
observational data. While we wish to use as many observational variables as
possible (as explained above), in practice we have to reduce the information
to a limited set of global spatial patterns (multivariate eigenvectors), in
order to make our statistical calculations tractable. These eigenvectors
explain the main variations in simulated values of the observable variables
found in a large ensemble of perturbed climate model variants (see Section
3.2.9). We use six eigenvectors, based on diagnostic tests indicating that this
choice strikes a reasonable balance between the need to include enough
information to calculate weights which are effective in capturing variations
in simulation quality between different model variants, and the risks of
trying to include too much information. Use of too many eigenvectors could
result in (a) the inclusion of noisy patterns which do not capture physically
meaningful variations in behaviour across our ensemble of alternative
model variants, and (b) the risk that too few model variants would receive
a non-negligible weight, in which case it would not be possible to obtain
statistically robust projections when approximating an integration over all
possible model variants (i.e. over all points in the model parameter space)
using a finite sampling strategy (see Section 3.2.12). However, we test the
sensitivity to this choice by recalculating selected results assuming retention
of five eigenvectors (see following discussion of Figure A2.1).

iv. Some choices are subjective in principle, but are also limited by what
information is available. An important example is the set of alternative
climate model results available for use in our calculation of the effects of
structural model errors (discrepancy, see Section 3.2.8). We recognise that if
a larger sample had been available we might have obtained different results;
however, we show below that reducing the set of climate models used has a
limited impact on our probabilistic projections for surface temperature and
precipitation, compared with the total uncertainty expressed through the
spread in the UKCP09 probability distributions.

v. The third category of subjective choices encompasses those which are based
on expert judgement, and are essentially unconstrained by objective checks
or practical issues such as availability of resources. In our case, the most
obvious example consists of the expert distributions for uncertain climate
model parameters controlling surface and atmospheric processes, which
form a fundamental prior input to our Bayesian method of climate projection
(see Section 3.1). In our integration over model parameter space, we assume
that these parameters are equally likely within the middle 75% of the range
estimated by experts, and that the probability drops linearly to zero at the
minimum and maximum values. However, alternative choices could also be
justified, so the sensitivity of the results to these needs to be tested (see
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below). This is feasible, because our method includes a statistical emulator of 
climate model output which can estimate results likely to be obtained for any 
given combination of parameter settings. 

A2.2.1 Sensitivity of results to plausible variations in the UKCP09 
methodology 
In this section we demonstrate the sensitivity of our results to a number of choices 
falling into categories (iv) and (v) above. We focus on changes in 30-yr averages of 
temperature and precipitation over Wales in winter and summer, as examples of 
two of the most important variables contained in the projections. Note, however, 
that the sensitivities are liable to be different for different variables. 

The black curves in Figure A2.1 quantify the total uncertainty in the UKCP09 
projections (omitting the downscaling component, as this example considers a 
global climate model grid box). The contribution of structural modelling errors 
to the total uncertainty, represented by the discrepancy term of our Bayesian 

Figure A2.1: Probability distributions from 
six sensitivity tests (coloured) compared 
to UKCP09 results (black). The tests 
were done for summer and winter, for 
absolute changes in mean temperature 
(ºC), and percentage changes in mean 
precipitation, for 2070–2099 relative 
to 1961–1990. Results are presented 
for a global climate model grid box 
corresponding approximately to Wales, 
and are based on application of the full 
methodology of Chapter 3, apart from 
the downscaling step of Section 3.2.11. 
Uniform prior and Inflated uniform 
prior refer to changes to the expert-
specified distributions for surface and 
atmospheric climate model parameters; x2 
discrepancy, x0.5 discrepancy and No low 
resolution multimodel denote variations 
to our method of estimating the effects 
of structural model error, and Five 
eigenvectors tests the effect of reducing 
the number of multi-variate spatial 
patterns used to weight different model 
variants according to their fit to historical 
observations of recent climate. Plots on 
the left-hand side show prior probabilistic 
projections, that is ones obtained after 
sampling the uncertainties accounted 
for in UKCP09, but without constraining 
the projections with observations. 
Plots on the right hand side show 
posterior probabilities after applying the 
observational constraints. Further details 
in text.
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framework and derived from alternative climate models, is recognised as an 
element of the methodology which is important, yet difficult to quantify (see 
Section 3.2.8 and above). We test the sensitivity to the discrepancy in two ways. 
First, we double the variance of the discrepancy associated with future projections 
of climate variables. This is done on the basis that our method could underestimate 
discrepancy, given the relatively small sample of results available from alternative 
climate models; we also try halving the variance, in order to clarify the effects 
of varying the discrepancy spread in both directions. Diagnostic tests show that 
our estimates of the discrepancy associated with historical simulations of climate 
(Section 3.2.8) may actually be larger than the systematic component of model error 
found in verification against observations in practice (at least for the observables 
used in our calculations). While it does not necessarily follow that our estimates 
of future discrepancy are also likely to be too small, this result does underline the 
possibility that we could have overestimated discrepancy, particularly by assuming 
that all the alternative climate models included in our calculation are equally 
credible (Section 3.2.8). In addition to halving the discrepancy variance, we also 
test the possible consequences of this by removing two models with relatively low 
spatial resolution from the multimodel ensemble (noting that low resolution is 
only one of a number of possible causes of model error). This test can potentially 
alter the mean value of the contribution of structural model error, as well as the 
spread about the mean value, whereas the variance perturbation tests only alter 
the spread. Neither of these tests addresses the possibility that there could be a 
common bias in future projections from all current climate models. This is another 
example of an untestable assumption, since there is no obvious basis on which to 
estimate how large such a bias could be.

We also test the expert prior choices for the distributions of uncertain climate 
model parameters controlling surface and atmospheric processes, this being a 
fundamental input to our methodology (see Sections 3.2.3 and 3.2.7). For any 
given parameter, we assume its distribution to be uniform (i.e. to show an 
equal probability for alternative settings) for values within the middle 75% of 
the range of possible values given by experts, and then to drop to zero at the 
extreme low and high values. However, such prior distributions are recognised as 
being themselves uncertain (e.g. Frame et al. 2005; Rougier and Sexton, 2007), 
so we investigate two other choices: assuming uniform probability across the 
full expert range, and assuming uniform probabilities across a full range of 
values 15% larger than that specified by experts. The latter, in particular, is a 
conservative specification which assumes both that the experts systematically 
underestimated the extremes of their ranges, and that the extreme values can 
be assumed no less likely than values near the middle of the range. For some 
parameters, this test involves pushing their values close to absolute extremes: 
for example the mixing coefficient for convective entrainment (which has the 
largest impact on global climate sensitivity of any of the parameters considered 
(Murphy et al. 2004; Stainforth et al. 2005) cannot fall below zero by definition, 
yet the inflated uniform prior has the effect of considering values close to zero 
at one of its bounds. In order to pursue the second test, we have to assume that 
our emulator (used to predict climate model output at any desired combination 
of parameter settings — Section 3.2.3) gives realistic results when applied to 
parameter values outside the range on which it was trained. 

Figure A2.1 shows in its left-hand column the effects of the applied sensitivity 
tests on the prior probabilistic projections (that is prior to the weighting of 
different regions of parameter space according to the fit to our set of historical 
observations), and in its right-hand column the effects on the posterior projections 
(after the observational constraints have been applied). The sensitivity tests 
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Figure A2.2: Posterior probabilistic 
projections from six sensitivity tests 
(coloured) compared to UKCP09 results 
(black), for summer changes in a typical 
warmest day of summer (ºC), defined as 
the 99th percentile of daily maximum 
temperatures during June to August. 
Changes are shown for the global climate 
model grid boxes corresponding to SE 
England (left) and NE England (right), 
for 2070–2099 relative to 1961–1990. 
Sensitivity tests are as described in Figure 
A2.1.

Change in temperature (ºC) Change in temperature (ºC)
−20 −10 0 10 20 30

0.00

0.05

0.10

0.15
N England

−20 −10 0 10 20 30
0.00

0.05

0.10

0.15

UKCP09 x2 discrepancy
Uniform prior Inflated uniform prior
x0.5 discrepancy Five eigenvectors
No low resolution multimodel

R
el

at
iv

e 
p

ro
b

ab
ili

ty

R
el

at
iv

e 
p

ro
b

ab
ili

ty

SE England

−2 0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

Change in temperature (ºC) Change in temperature (ºC)

Change in temperature (ºC)Change in temperature (ºC)

−2 0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

−5 0 5 10 15
0.0

0.2

0.4

−2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

UKCP09 x2 discrepancy
Uniform prior Inflated uniform prior
x0.5 discrepancy Five eigenvectors
No low resolution multimodel

Western North AmericaMediterranean Basin

North Asia Southeast Asia

R
el

at
iv

e 
p

ro
b

ab
ili

ty
R

el
at

iv
e 

p
ro

b
ab

ili
ty

R
el

at
iv

e 
p

ro
b

ab
ili

ty
R

el
at

iv
e 

p
ro

b
ab

ili
ty

Figure A2.3: Posterior probabilistic 
projections from six sensitivity tests 
(coloured) compared to UKCP09 results 
(black), for summer changes in average 
temperature (ºC) for 2070–2099 relative 
to 1961–1990, over a number of regions 
defined by Giorgi and Francisco (2000). 
Sensitivity tests are as described in Figure 
A2.1.
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are found to have a significant impact on the prior projections, especially for 
precipitation. This shows that the tests represent significant perturbations to 
our methodology, potentially capable of exerting an important influence on the 
results. However the impacts on the posterior projections are more modest, and 
the induced differences in probability are also relatively small compared with the 
uncertainties indicated by the UKCP09 distributions (black curves). This shows 
that the observational constraints play a key role in discriminating between the 
degrees of credibility of projections obtained from different parts of the model 
parameter space, and hence in rendering the method reasonably robust to 
significant variations in the set of key choices investigated, at least for the vari-
ables considered in Figure A2.1. This is underlined by Table A2, which shows how 
the sensitivity tests affect values for the 10, 50 and 90% probability levels of the 
projected changes. The variations from the UKCP09 results do not exceed 0.5ºC 
for surface temperature, or 7% for changes in precipitation. These sensitivities, 
while relatively modest, are larger for the more extreme probability levels, and 
users will need to assess their consequences when set against other uncertainties 
associated with specific decision problems, as well as against the backdrop of 
climate projection uncertainties discussed in this Annex.

Figure A2.2 shows the impact of the same sensitivity tests on changes in the 
intensity of a typical warmest day of summer, characterised as changes in the 
value of the 99th percentile of daily maximum temperatures from June to August. 
Again the effects of the sensitivity tests, on the posterior probabilistic projections 
are fairly modest, while the impacts on the prior probabilistic projections (not 
shown) are considerably larger. Similar results are found for projections of mean 
temperature and precipitation in other regions of the world. As an example, 
Figure A2.3 shows temperature projections for June to August over several 
different regions. Again the variations in the posterior projections are modest, 
while the variations in the prior projections (not shown) are larger.

A2.3 Comparison of UKCP09 methodology against 
alternative approaches

The above tests consider variations in specific aspects of our methodology, 
however it is also important to consider how different the results could have been 
had we chosen an entirely different approach. Here, the first point is that while 
a number of methods for probabilistic climate projection have been published 
in the research literature, we are not aware of any that have been designed 
to sample uncertainties as comprehensively as is done in UKCP09 (for example, 
there are several methods which sample uncertainties in physical climate system 
processes, but none which combines these with uncertainties in both carbon 
cycle processes and downscaling). This is because it is acceptable in academic 
studies to explore methodologies which are conditional upon the omission of 

10% Probability level 50% Probability level 90% Probability level

Summer temperature 2.1, 2.4, 2.7 4.1, 4.2, 4.6 6.1, 6.3, 6.8

Winter temperature 1.7, 1.8, 1.9 2.9, 2.9, 3.0 4.2, 4.2, 4.3

Summer %precipitation –54.5, –51.2, –48.0 –31.7, –28.1, –26.6 –3.2, 0.2, 3.6

Winter %precipitation 6.4, 8.4, 13.3 23.9, 24.4, 30.6 44.5, 46.9, 54.0

Table A2: Sensitivity to a number of key 
assumptions (see text) of three probability 
levels values for changes in surface 
temperature (ºC) and precipitation (%) 
for Wales, as an example GCM grid box. 
Summer and winter changes are for the 
period 2070–2099 relative to 1961–1990. 
Each triplet consists of the UKCP09 value 
(in bold), accompanied by the lowest 
and highest values obtained from the six 
sensitivity tests of Figure A2.1.
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important known sources of uncertainty, however this would not be acceptable 
in a project like UKCP09, since our aim is to produce information suitable to 
support user decisions in the real world. So we cannot compare UKCP09 against 
some competing approach designed to produce probabilities with the same level 
of decision-relevance. 

However, by omitting some elements of the UKCP09 approach we can compare 
it against alternative methodologies conditional on sampling similar subsets of 
the uncertainties in climate projection. For example, a number of approaches 
have been suggested in which probabilistic projections are derived purely from 
results from a multi-model ensemble of global coupled ocean–atmosphere 
models of typically 10–20 members (Tebaldi and Knutti (2007) review several of 
these), rather than our approach of using larger ensembles of model variants 
specifically designed to sample uncertainties, with multi-model ensemble 
results playing a significant but more subsidiary role. Some of the multi-model 
approaches are nevertheless similar to ours in their basic character, in that they 
seek to construct a range of alternative projections which express the effects 
of uncertainties arising from modelling errors, and then adjust these according 
to some set of observational constraints. Another class of approaches seeks to 
project future changes explicitly designed to be consistent with uncertainties in 
some set of observations of recent climate, using climate model results to provide 
the necessary relationships between historical observations and future changes 
(e.g. Piani et al. 2005; Knutti et al. 2006; Sanderson et al. 2008). Closely related to 
these are approaches which seek to project future changes by assuming a linear 
relationship between errors in past and future changes, constraining future 
changes according to the range of past errors consistent with observations (Allen 
et al. 2000; Stott and Kettleborough 2002; Stott et al. 2006a). 

We compare our projections for annual mean temperature with those made by 
a method of the latter type, based on Stott et al. (2006a). Their method uses 
model simulations and historical observations of changes in surface temperature 
during the 20th century to derive a distribution of alternative scaling factors 
which can be applied to the simulated changes to fit the observed changes to 
a level consistent with uncertainties in the latter. The distribution of scaling 
factors is then applied to the future model response to produce a probabilistic 
climate projection. Stott et al. (2006a) produced two versions of this technique. 
The first version projected future regional changes according to past changes in 

Figure A2.4: Comparison of probabilistic 
climate projections for changes in  
10-yr annual mean 1.5 m temperature 
(ºC) in response to SRES A1B (i.e. UKCP09 
medium) emissions. Changes shown are 
for Northern Europe, relative to 1906–
2005, from two methods: UKCP09 (red) 
and an updated version of Stott et al. 
(2006a) (blue). The probability levels are 
2.5, 10, 50 (thick), 90, and 97.5% as used 
in Stott et al. (2006a). The observations 
are also shown as the black line.
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the same region (thus obtaining relatively conservative estimates of uncertainty 
by neglecting possible constraints from aspects of past change remote to the 
region of interest); the second version scaled future regional changes according 
to errors in past spatial and temporal patterns of change over the whole globe 
(thus obtaining narrower estimates of uncertainty, although this does not take 
account of possible errors in the regional pattern of response, since it scales 
the model’s pattern of response over the whole globe by the same factor, with 
uncertainties, for each region). We use an updated version which accounts for 
past changes in global patterns of surface temperature, thus removing the 
contrasting limitations of the two earlier techniques. The Stott et al. method 
provides projections for large regions (no downscaling method is included), and 
does not account for uncertainties in future changes in radiative forcing arising 
from carbon cycle processes. Therefore, we consider a like-for-like comparison of 
projections of spatially averaged temperature for the whole of northern Europe, 
applying the UKCP09 methodology without downscaling, and with no sampling 
of the effects of future uncertainties in climate feedbacks involving the carbon 
cycle (by holding these feedbacks fixed at values diagnosed from the standard 
published variants of the relevant configurations of HadCM3). Both methods 
assume that there is a negligible effect from other possible sources of uncertainty 
in either historical forcing (e.g. black carbon) or future changes (e.g. methane 
cycle) — see Box 2.1, Chapter 2. 

We applied the Stott et al. method to each of the 17 members of our PPE_A1B 
ensemble of perturbed variants of HadCM3 (Section 3.2.4 and Figure 3.2), 
obtaining projections with associated uncertainties from each ensemble member, 
and combining these to form probabilistic projections shown by the blue curves 
in Figure A2.4. The results show that the median projection of future changes 
is slightly smaller in the UKCP09 method. The UKCP09 method also produces 
a slightly wider spread from 2010 onwards, but a somewhat narrower spread 
during the historical period. Uncertainties from UKCP09 broaden by including 
a more complete sampling of the possible uncertainties arising from parameter 
choices in models and structural model errors common to model projections, 
and narrow by including a wider range of observational constraints, whereas 
the Stott et al. uncertainties rely on linear scaling of available model simulations 
based on a more limited range of observational constraints. Such differences 
could serve to broaden or narrow the UKCP09 uncertainty ranges relative to 
the Stott et al. uncertainty ranges, dependent on their competing influences. 
A detailed examination of these differences is beyond the scope of this report. 

The Stott et al. method is set up to provide projections which are relatively 
conservative (in the sense that only one relatively well understood observational 
constraint is used), and which minimise their dependence on the set of climate 
model simulations used to produce them (Stott et al. 2006b). Projections derived 
from this technique will be determined by the scaling factors, and associated 
uncertainties, found by matching simulated and observed realisations of the past 
climate warming attributable to human activity. On the other hand, the UKCP09 
approach is based on a different philosophy which seeks to place more weight on 
detailed aspects of climate system physics, both by sampling possible variations 
in these more widely, and then seeking to constrain them with a wider range 
of observations. It is therefore reassuring that two methods based on different 
principles and assumptions should give relatively similar projections in practice. 
This further supports the results of Figure A2.1 in indicating that the UKCP09 
projections are likely to be reasonably robust to the key assumptions involved in 
their generation. 
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A2.4 Contributions to uncertainty in the UKCP09 projections 

In Chapter 2, we identify three basic sources of uncertainty in projected climate 
change, associated with emissions of greenhouse gases, aerosols and their 
precursors, internal climate variability arising from natural unforced variations in 
the atmospheric and oceanic circulation, and uncertainty in modelling the forced 
response to emissions. For a given emissions scenario (in this case SRES A1B, the 
UKCP09 medium scenario), we consider the relative contributions of internal 
variability and modelling uncertainty to the total uncertainty expressed in the 
UKCP09 projections. We consider first an example involving the same variables 
analysed in Figure A2.1 (i.e. changes to summer and winter temperature and 
precipitation over the global climate model grid box representing Wales), thus 
omitting uncertainty arising from the downscaling step of Section 3.2.11, which 
is considered later. We partition modelling uncertainty into a few components 
representing key elements of our methodology. These consist of: 

• Parameter uncertainty, arising from uncertainties in the values of climate
model input parameters that control key physical processes. UKCP09 is based
on a comprehensive strategy for sampling parameter uncertainties in the
atmospheric component of the HadCM3 climate model, by combining a large
ensemble of model simulations with emulation of the outputs of possible
model variants for which we do not possess an actual simulation (Section
3.2.3). In addition, we sample parameter uncertainties in ocean and sulphur
cycle processes using a more limited strategy based on 17 member ensembles
of alternative model variants. We define parameter uncertainty to include all
of these sources of uncertainty (including uncertainty arising from emulator
error in the case of atmospheric parameters), but note that atmospheric
parameters provide the dominant contribution. Our method for the
quantification of uncertainties in carbon cycle processes, which we consider
under a separate heading below), also contains a substantial contribution
from parameter uncertainties associated with terrestrial ecosystem processes
in HadCM3C (the configuration of HadCM3 including an interactive carbon
cycle).

• Structural uncertainty, which measures the additional uncertainty due to
modelling errors which cannot be resolved by varying uncertain parameters
in HadCM3 (Section 3.2.8). As a proxy for this, we use information from
alternative contemporary climate models, assuming that errors in our ability
to predict their historical and future simulations of climate form reasonable
estimates of structural errors in the ability of HadCM3 to simulate the real
climate system. Note that our strategy estimates the impacts of structural
errors in atmospheric processes, but not in ocean transport or sulphur cycle
processes.

• Timescaling uncertainty is the uncertainty that arises from the need to predict
time-dependent climate responses from the simulations of the equilibrium
response to doubled levels of carbon dioxide which form the basis of our
strategy for sampling uncertain atmospheric model parameters (see Sections
3.2.4 and 3.2.6). The uncertainties associated with timescaling include the
effects of internal variability. We remove these in the analysis below, in
order to isolate uncertainties arising from methodological assumptions in
our procedure, for example that time-dependent climate changes can be
assumed to be linearly related to changes in globally averaged temperature.
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• Carbon cycle uncertainty. This is assessed in a separate category because
carbon cycle feedbacks (e.g. Friedlingstein et al. 2006) are recognised to give
rise to a level of uncertainty in global temperature projections comparable
to that due to atmospheric processes. These are sampled by combining 15
perturbed variants of HadCM3C with simulations from an alternative multi-
model ensemble of nine coupled climate–carbon cycle models (see Sections
3.2.4 and 3.2.6).

Uncertainty due to internal variability is estimated from long control simulations 
of members of the PPE_A1B ensemble carried out with no changes to the 
applied external forcing. We quantify timescaling uncertainty by executing our 
methodology with parameter and carbon cycle uncertainties removed (by fixing 
values for all model parameters in all Earth System components to those used in 
the standard published variants of the relevant HadCM3 configuration), and with 
the future component of the structural uncertainty set to zero. The component 
of timescaling uncertainty due to internal variability is then subtracted, in order 
to isolate the aspects that could potentially be removed by improvements to the 
methodology in future (see Section 4). 

The contributions from parameter, carbon cycle and structural uncertainty are 
calculated by repeating the probabilistic projections, each time removing one or 
more of these components (either by fixing relevant parameters to their standard 
values, or by setting future structural uncertainty to zero), and then comparing 
the spread of the projected changes for 2070–2099 relative to 1961–1990. For 
instance, to estimate the increase in spread due to carbon cycle uncertainty we 
run the projection twice, the first time sampling the carbon cycle parameters as 
described in Section 3.2.6, and the second time fixing the carbon cycle parameters 
to their standard values. A limitation of this approach is that the change in spread 
due to addition of carbon cycle uncertainty depends on which other sources 
of uncertainty have previously been sampled, as the uncertainties combine 
in nonlinear ways. For instance, carbon cycle feedbacks (and their associated 
uncertainties) are larger when temperature changes are high, and only when the 
other sources of uncertainty are sampled do the temperature changes become 
large enough for a large carbon cycle feedback. So we run all eight permutations 
of fixing/sampling parameter, carbon cycle and structural uncertainty (with 
internal variability and timescaling uncertainties always included). From this set 
of eight, we have four pairs of runs which can each be used to look at the increase 
in spread that arises from allowing each of the three types of uncertainty to be 
sampled rather than kept fixed. Then we take the root-mean-square change in 
spread, and plot the relative size of the contributions in a pie chart in Figure 
A2.5. Spread is measured as the distance between the 10 and 90% probability 
levels of relevant probability distributions.

For the four examples shown in Figure A2.5, parameter uncertainty provides 
the largest contribution (22–31%). This occurs despite the fact that formal 
observational constraints have been applied to limit the impact of parameter 
uncertainties (particularly the dominant contribution from atmospheric 
model parameters), whereas this is not the case for the other components of 
uncertainty in Figure A2.5. In fact each of the other components typically adds 
a significant contribution of its own (in the range 12–27%), and no single 
source of uncertainty dominates. For winter precipitation no contribution from 
(the methodological aspects of) timescaling is shown, as the total timescaling 
uncertainty (i.e. including internal variability) is found to be the same as our 




