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Typically, a global climate model breaks up the surface of the earth into 
a number of latitude/longitude grid boxes. It divides the atmosphere into 
layers, from the surface to the stratosphere, and does the same for the 
ocean, from the surface to the deepest waters (Figure 2.5). At each of 
the points on this three-dimensional grid in the atmosphere a number 
of equations, derived from the basic laws of physics, are solved which 
describe the large-scale evolution of momentum, heat and moisture. Similar 
equations, but including different variables, are solved for the ocean. The 
third Met Office coupled ocean-atmosphere GCM, HadCM3, has a resolution 
over land areas of 2.5° latitude x 3.75° longitude, with 19 vertical levels in 
the atmosphere and four layers in the soil. The ocean model has 20 vertical 
levels and a grid size of 1.25° latitude x 1.25° longitude. In all, there are 
about a million grid points in the model. At each of these grid points, 
equations are solved every time the model steps forward (typically 30 min of 
model time) throughout an experiment which typically lasts 250 model yr. 

The large ensemble of experiments which form the basis of the UKCP 
probability projections described in Section 2.3.1 use the slab model 
configuration of HadCM3, known as HadSM3. This represents only the 
top 50 m of the ocean as one layer and prescribes the effects of ocean 
heat transport rather than simulating ocean currents explicitly. Hence it 
is much faster to run on a given computer and so we can run many more 
experiments. These experiments simulate the long-term equilibrium climate 
(a) at current greenhouse gas concentrations and (b) in a world where 
these are assumed to be double the current concentrations. Although these 
simulations do not account for possible changes in ocean circulation, surface 
and atmospheric processes are widely acknowledged to be the leading 
drivers of the major features of global patterns of climate change, so slab 
models are used to provide credible realisations of these patterns. In UKCP09 
we are able to run many more experiments (that is, bigger ensembles) using 
the slab model, and hence explore uncertainties in surface and atmospheric 

Figure 2.5: The horizontal and vertical 
structure of the HadCM3 climate 
model. 
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processes more comprehensively. A smaller ensemble of simulations of time-
dependent climate change was also produced with the coupled full-ocean 
model (HadCM3). Relationships between the change patterns simulated 
between corresponding variants of the slab model and the full ocean model 
are then used to timescale the slab model results, that is, to convert them 
into a large ensemble of projections of time-dependent changes from 
1951 to 2099, whilst also accounting for uncertainties in the projected 
geographical patterns due to timescaling. We use additional ensembles of 
HadCM3 simulations to sample uncertainties in ocean transport, sulphur 
cycle and land carbon cycle processes, and hence also include the effects of 
these in the projections. We will return to this topic later in this box, and 
Chapter 3 discusses it in detail.

Parametrisations in climate models

Many of the most important processes in the climate system (for 
example the drag exerted by hills as air flows over them, and the 
formation of clouds) take place at a scale much smaller than the grid 
size of GCMs — these are called subgrid-scale processes. These cannot 
therefore be described explicitly, so we develop relationships, known as 
parametrisations, which estimate them from grid scale variables such as 
winds, temperature, humidity, etc. which are explicitly described in the 
model. 

We illustrate this by taking the example of cloud amount. This is defined as 
the proportion of each model grid square which is covered by cloud at each 
level in the atmosphere. To calculate cloud amount in HadCM3, we use the 
model’s calculated mean temperature and water vapour content for that 
square and level; this is known as parametrising cloud amount in terms of 
the large scale model variables. Now the equation relating water vapour 
and temperature to cloud amount contains some parameters, the values 
of which are based on results from, for example, aircraft measurements 
or high resolution process models such as cloud resolving models. The 
values of these parameters are uncertain, and this is a major cause of 
model uncertainty. So, to quantify this model uncertainty, we vary these 
parameter values between plausible limits to form variants of a number 
of configurations of the model, in order to generate the ensembles of 
simulations which form the primary basis for the PDFs in UKCP09. 

But the parametrisation which predicts cloud amount from the modelled 
large scale variables may be different in models from other centres; not just 
the parameter values but the actual form of the parametrisation scheme 
itself; this is illustrated schematically in Figure 2.6. This is an example of a 
structural difference between models; the effect of structural differences 
cannot be taken account of using variants of a single model alone. In 
UKCP09 it is taken into account in the probabilistic projections by using a 
number of models from other centres, as explained in Chapter 3. 

Feedbacks

Basic greenhouse theory tells us that when the concentration of a 
greenhouse gas, such as CO2, increases in the atmosphere, it alters the 
balance between the amount of incoming energy from the sun and that 
leaving the earth as infrared energy (the radiative balance). Given enough 
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time, the climate system adjusts to this new condition by increasing the 
surface temperature of the earth. The direct radiative effect of a doubling 
the concentration of CO2 in the atmosphere would eventually cause the 
surface temperature of the earth to increase by about 1ºC. However, once 
a greenhouse warming starts, a number of consequent changes start to 
happen which can act to either reduce or increase the direct greenhouse 
warming; these are known as negative or positive feedbacks respectively. 

We illustrate this with some examples. Firstly, as the atmosphere starts 
to warm due to the direct greenhouse effect, it can “hold” more water 
vapour — and models indicate that water vapour concentration increases 
to maintain time-averaged relative humidity (which also depends on 
temperature) approximately constant as climate change proceeds. As 
water vapour is a powerful greenhouse gas this effect will further increase 
warming — a positive feedback. Secondly, as the oceans start to warm 
some sea-ice will melt. Sea-ice reflects back a lot of solar radiation, but 
the open ocean it exposes when it melts absorbs more radiation; this will 
reinforce the original warming effect — another positive feedback. Thirdly, 
one of the most critical feedbacks, but also one of the most complex, is that 
due to changes in clouds. In the present climate, clouds have a large effect 
on climate; high clouds act to increase surface temperatures but low clouds 
tend to cool climate; the net effect is a cooling one. Greenhouse gas — 
driven climate change can alter many characteristics of clouds at all levels 
— their amount and altitude, and the properties of their constituent water 
droplets and ice crystals, for example. Such changes can alter the radiative 
properties of clouds — the effect they have on incoming solar radiation 
and outgoing long wave radiation — and the net effect could be either 
positive or negative. The last example is that of changes of land surface 
vegetation (from forests to grassland, for example, or desertification) 
due to changes in rainfall or temperature which in turn can alter local 
and global climate. There are many other feedbacks, both positive and 
negative, in different parts of the climate system. 

Climate model A

Radiation scheme P

Convection scheme Q

Boundary layer scheme R

Cloud scheme S

Parameter 1
Parameter 2
Parameter 3

Climate model B

Radiation scheme X

Convection scheme Q

Boundary layer scheme Y

Cloud scheme Z

Parameter 4
Parameter 5
Parameter 6

Figure 2.6: Schematic illustration 
of parametrisation schemes in 
two different climate models, and 
the parameter values within one 
scheme (that for cloud). Note that 
different models may share one or 
more parametrisation schemes; in 
the diagram this is denoted by the 
convection scheme.
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Feedbacks naturally arise in the climate model because the processes which 
lead to them (in the second example above this is the formation of sea-
ice and its reflectivity) are explicitly represented or parametrised. Many 
feedbacks take place at a small scale and capturing their overall effect in 
the model therefore depends upon the parametrisations of small scale 
processes. Hence the strength of the feedbacks, and thus future changes in 
climate, will depend on the form of the parametrisation used (part of the 
model structure), and the values of its constituent parameters. This is one 
of the main causes of the differences between projections from different 
models. The methodology developed for the UKCP09 projections is 
designed to sample these uncertainties, to the extent that this is presently 
possible, in a systematic way. 

Biogeochemical cycles

The carbon cycle and the sulphur cycle represent two important processes 
in climate change, yet, as with standard processes in the atmosphere and 
oceans, they carry their own large uncertainties. Here we give an overview 
of the processes, the uncertainties, and how UKCP09 includes them in the 
final probabilistic projections; more detail resides in Chapter 3. 

The carbon cycle

Currently about half of the emissions of CO2 from human activities (fossil 
fuel combustion and land use change) are taken up by sinks on land 
(vegetation and soils) and in the ocean (seawater and ecosystems within 
it), leaving the remainder of the CO2 in the atmosphere where it increases 
concentrations. But as climate starts to change, carbon sinks can also 
change, so may be able to absorb more, or less, CO2 from the atmosphere. 
For example, as soils warm they increase their respiration of CO2 back 
to the atmosphere and their ability to remove CO2 will weaken, leading 
to atmospheric concentrations being higher than they would otherwise 
be — a positive feedback. On the other hand, a warmer climate will 
encourage the growth of boreal forests which would take up more CO2 
from the atmosphere — a negative feedback. There are a host of such 
feedbacks, both positive and negative, although the net effect is a positive 
one. Uncertainties in estimating atmospheric concentrations resulting 
from emissions were not dealt with in the IPCC Third Assessment Report 
(TAR) in 2001, and hence could not be taken into account in UKCIP02. In 
UKCP09 these feedbacks are included, and the uncertainty they add to 
climate change projections is estimated using two sources of information. 
Firstly, using variants of the Met Office coupled climate — carbon cycle 
model with different values for the land carbon cycle parameters within it. 
Secondly, using results from a project (known as C4MIP) which compared 
results from a number of international models which include the carbon 
cycle. Further detail is given in Chapter 3. Note that, although UKCP09 
projections include the feedback from both land- and ocean-carbon cycle 
projections, they only include the effect of uncertainties in the feedback 
from land, which has been estimated (in C4MIP, see Friedlingstein et al. 
2006) to be several times greater than that from the ocean component. 
Because the processes involved in climate — carbon cycle feedback are 
less well understood, and projections are less constrained by observations, 
our ability to assess the uncertainty in these is more limited than for other 
aspects of the climate system. 
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The sulphur cycle

Sulphur gases emitted from fossil fuel burning, and naturally from the 
oceans, takes part in chemical reactions in the atmosphere to form small 
particles — sulphate aerosol. These are eventually removed from the 
atmosphere by rain and clouds, having a typical lifetime of a few days, 
but whilst in the atmosphere they can have a substantial cooling effect 
on climate in a direct and an indirect way. The direct cooling effect arises 
when a suspension of aerosols in the clear atmosphere reflects back some 
of the incoming solar radiation before it has a chance to warm the ground. 
The indirect effect arises from the ability of sulphate particles to act as 
additional nuclei on which water vapour condenses to form clouds. Such 
clouds would therefore have more water droplets, each of which (for a 
given amount of available water) would be smaller — the total surface 
area would therefore be greater and the cloud would reflect back more 
solar radiation — a further cooling effect. Both the direct and indirect 
effects described above are included in the HadCM3 model.

A second indirect effect occurs within sulphate-laden clouds. Because their 
droplets are smaller than those in clean air, the processes which lead the 
droplets to grow heavy enough to form rain are slower, and hence the 
clouds persist (and reflect back solar radiation) longer — a further indirect 
cooling effect. This is a much more complex process, and is only now 
becoming understood well enough to be included in models (such as the 
Met Office earth system model, HadGEM1) but is not included in UKCP09. 
Because atmospheric sulphate burdens are expected to decline in the 
future, the omission of this effect may lead to an underestimate of changes 
in the first few decades of the UKCP09 projections. 

Constituents included, and not included, in the probabilistic projections

The atmospheric constituents included in HadCM3, its corresponding 
simple-ocean configuration and the regional climate model, are shown in 
Table 2.1. With the exception of the cloud persistence effect of sulphate 
aerosols, the projected combined effect by 2100 of changes in those 
constituents not included is unlikely to add a significant amount to overall 
uncertainty. Similarly, although the Met Office model includes the effect 
of chemical reactions in the atmosphere which determine concentrations 
of methane and tropospheric (low altitude) ozone, no attempt was made 
to estimate the consequent uncertainty in concentrations; this would also 
be expected to have a minor effect. Uncertainty in the climate effect of 
northern hemisphere stratospheric ozone changes is also likely to be small 
relative to those quantified.

In contrast, other components of the methane cycle, such as climate-
induced emissions from wetlands, melting permafrost and methane 
hydrates, do have the potential to modify future climate change 
significantly. However, these feedbacks are so poorly understood as to 
make estimates of their effect very uncertain, and hence they are not 
currently integrated into any climate model.

Constituent Whether 
included

Carbon dioxide Yes

Methane Yes

Nitrous oxide Yes

CFCs, PFCs, HFCs, 
HCFCs, SF6

Major 
ones

Tropospheric ozone Yes

Stratospheric ozone Yes

Sulphate aerosols — 
direct effect

Yes

Sulphate aerosols — 
cloud albedo effect

Yes

Sulphate aerosols 
— cloud persistence 
effect

No

Black carbon aerosol No

Organic carbon 
aerosol

No

Mineral dust No

Sea salt aerosol No

Land cover (albedo 
effect)

No

Table 2.1: The atmospheric constituents 
included in the Met Office models used 
for UKCP09.
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At a local scale, differences between projections are even more obvious. Figure 
2.7 shows, as an example, projections of changes in summer precipitation over the 
UK from 12 climate models, for the same future time period and same emissions 
scenario. Rainfall over London shows a reduction of about 60% in the projection 
from one model, but a small increase in another. Note that, because Figure 2.7 
shows only single projections — all that is available from most climate models — 
natural internal variability contributes to the differences between them.

A similar illustration of model differences was shown in UKCIP02. The differences 
now are no smaller than those shown 7 yr ago — in other words, there has been 
no apparent convergence of model projections, despite improvements in climate 
process representations in models made during this period. For this reason, 
we cannot assume that continuing model improvements will quickly lead to a 
narrowing of uncertainty in projections. 

Figure 2.7: Changes (%) in summer 
(June–August) precipitation by the period 
2071–2100 compared to 1961–1990, from 
12 climate models, each of which took 
part in the IPCC AR4, all driven with the 
same SRES A2 emissions scenario.

–60 –40 –20 0 20 40 60

Change in precipitation %
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Planners and decision-makers could, of course, use the range of projections such 
as those in Figure 2.7 as an estimate of the uncertainty which should be taken 
into account, and the UKCIP02 report recommended this course of action. Of 
more use to planners would be some indication of the relative credibility of each 
of the models, but systematic techniques for doing this are difficult to apply 
to such a small and diverse set of climate models. In UKCP09 we quantify the 
uncertainties in projections, giving information on the relative likelihood of 
different climate change outcomes, in the form of probabilistic projections. In 
this way, rather than give users a single projection of unknown likelihood, we 
can show the uncertainty in projections in the form of a probability distribution 
function or PDF. This shows us the relative probability of temperatures changes of, 
say 2ºC or 3ºC at a particular location by a certain time period. The interpretation 
of this probability is important and is discussed in Box 1.3 and Section 2.5. More 
usefully, it can be used to estimate the probability of a change being greater or 
less than some threshold. The method gives probabilities of changes in number 
of variables, both monthly means and some extremes. PDFs, and an alternative 
method of presenting the same information, the Cumulative Distribution 
Function (CDF), are explained in more detail in Box 1.3. 

The requirement for probabilistic projections has been recognised by the climate 
modelling community for some time, and they have begun to develop methods 
based on projections that are available from a number of climate models – 
the so called ensemble of opportunity (Giorgi and Mearns, 2003; Dessai et al. 
2005; Goodess et al. 2007; CSIRO and Bureau of Meteorology, 2007; Frei, 2007). 
However, whilst such an ensemble (as in Figure 2.7) is sufficient to demonstrate 
the requirement for probabilistic projections, it is not sufficient to fulfil it. This 
is because it is assembled on an ad-hoc basis, and has not been designed to 
sample modelling uncertainties in a systematic and comprehensive manner. The 
ensemble of opportunity in Figure 2.7 shows some range of projections, but does 
not indicate in which part of the range the outcome is likely to lie — it may even 
be outside the model range. We therefore base the UKCP09 on an alternative 
approach, which nevertheless uses the information from an international set of 
climate models, described in outline below and in more detail in Chapter 3. 

2.3.1 Accounting for modelling uncertainty in UKCP09
As summarised earlier, uncertainties in model projections arise from an incomplete 
understanding of processes in the Earth’s climate system, and an inadequate 
representation of these processes in climate models. These representations may 
be limited not only by physical knowledge but also by, for example, computing 
resources, and these lead to errors in models, which in turn lead to errors in 
projections. For convenience we group all these under the heading modelling 
uncertainty. 

In UKCP09 we sample uncertainties in a range of processes in the atmosphere 
and at the surface, the carbon and sulphur cycles, and in the ocean. However, 
we recognise that uncertainties in atmospheric processes are likely to be the 
major contributor to overall uncertainty at a local level, and hence these are 
treated in the greatest detail in the UKCP09 methodology. The development of 
new techniques to sample atmospheric model errors, and hence account for their 
effects in driving uncertainty in future projections of climate, is a key aspect of 
the research underpinning UKCP09. In order to understand the approach, it is 
convenient to separate sources of model error into two types: structural error 
and parameter error. The UKCP09 approach seeks to sample uncertainties arising 
from both of these. In the first case, when building a model the modeller will 
make choices about its basic structure, such as the grid on which atmospheric 
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* HadCM3, the model used as the basis of the UKCP09 projections, was also used for the UKCIP02 
scenarios. It might be thought that, six years on, a better model might have been used. However, a 
recent comparison of climate models with observations (Reichler and Kim, 2008) shows that HadCM3 
ranked second out of 17 models compared in CMIP-2 in 2002, but still ranked joint second out of 
21 models compared in the CMIP-3 comparison in 2007, where models were compared with a pre-
industrial control climate. The most recent Met Office Hadley Centre model does compare somewhat 
better with observations, but its higher resolution would have drastically reduced the number of 
ensemble members which could have been run, and hence given a less-comprehensive estimate of 
uncertainty.

or oceanic motions are resolved, the numerical integration scheme, the set of 
physical processes included, etc. Many important processes (such as those in 
clouds) occur on spatial scales too small to be resolved explicitly on the model grid, 
and therefore have to be represented in models using relationships with large 
scale variables which are resolved — so-called sub-grid scale parametrisations. 
The nature of the equations used for a given representation is an important 
component of its structure. Models containing different structural choices will 
possess different biases in their simulations of climate processes, and hence give 
different projections of change — this is the structural component of model 
error. In the second case, having chosen a particular parametrisation scheme to 
represent a given small scale process, the modeller has then to choose the values 
of parameters which control how the process operates in that scheme. These 
parameters are based on a mixture of theory, observations and experimentation, 
but the available information is seldom precise enough to allow the appropriate 
value of a given parameter to be accurately known — this gives rise to the 
parameter component of model error. This is discussed in rather more detail in 
Box 2.1. 

We explore the effects of uncertainties in atmospheric and land model parameters 
controlling surface and atmospheric processes using one climate model – in 
this case the Met Office model HadSM3 (a configuration of HadCM3* having a 
simplified ocean, see Box 2.1). This is done by identifying parameters controlling 
the detailed processes likely to have the most effect on model projections. Several 
parameters are selected from each of the schemes in the model’s atmosphere 
and land: layer cloud, convection, radiation, atmospheric dynamics, boundary 
layer, land surface and sea-ice. This covers uncertainties in the major aspects of 
the model’s physics. Next we ask experts to define a range of plausible values, 
together with an intermediate estimate, for each of the uncertain parameters. 

We then construct a large number (ensemble) of variants of the model, known 
as a perturbed physics ensemble, each of which contains a different choice of 
parameter values within these expert-specified bounds, and make a projection of 
climate change with each. As a first step, we can simply take this projection, for 
a particular quantity such as change in summer rainfall over some location, from 
each of the ensemble members and present these in the form of a distribution 
showing how frequently different outcomes occur — this is represented by the 
blue histogram in Figure 2.8.

In principle, we would build a different model variant with each possible 
combination of parameter values, but to make climate simulations with each 
of these variants would require an unfeasibly large amount of computing 
resources. Hence we chose a manageable number (280) of variants, to cover 
as comprehensive a range of outcomes as possible. However, the shape of the 
histogram in Figure 2.8 depends upon which combinations of parameter changes 
we choose. To predict the response for all the model variants that it was not 
possible to run, we build an emulator of model output, relating it statistically 
to the model parameters. This is trained on the model results we do have, and 
then used to estimate values of model output variables that would be obtained 
for any desired combination of parameter values. The distribution of projections 
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Figure 2.8: Hypothetical histogram 
showing the frequency of occurrence 
of different changes in summer rainfall 
from the 280-member perturbed physics 
ensemble of HadSM3. 

Figure 2.9: Hypothetical distribution 
showing the frequency of occurrence of 
different changes from the emulator. 

Figure 2.10: Hypothetical distribution 
showing the probability of different 
changes from the emulator, weighted 
according to model credibility based on 
observations (black curve).

Figure 2.11: The hypothetical probability 
distribution function of change of summer 
rainfall (red curve), including projections 
from both the Met Office perturbed 
physics ensemble and from alternative 
international climate models.
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* Note that in practice the methodology does not involve creation of an interim weighted distribution 
(as shown in Figure 2.10), prior to the addition of the effects of structural model error; the discussion 
is presented this way to emphasise the key inputs to the calculations.

from this is illustrated schematically by the blue curve in Figure 2.9, which can 
take a somewhat different shape from the histogram in Figure 2.8 because the 
former explores different combinations of parameter values.

Now the model variants will not all give rise to climate simulations of equal 
credibility, and hence their projections should not be given the same weight. We 
compare each model’s simulation of a wide range of variables for recent climate 
against observations, and also how well each hindcasts large scale patterns of 
temperature change over the last 90 yr. We use both these pieces of information 
to weight the projection from each model; this allows us to generate a weighted 
distribution of outcomes — the black curve in Figure 2.10.* 

So far, however, we have described how we use variants of one model to explore 
the effects of uncertainties in model parameters. However the presence of 
structural model biases, which cannot be resolved by varying parameters, gives 
an additional source of uncertainty in model simulations of both past and future 
climate. This affects both the weights to be assigned to different Met Office 
model variants, and the spread of possible future projections. We estimate the 
uncertainty due to these structural errors by using our perturbed physics ensemble 
to predict the results of an alternative set of twelve climate models (all of which 
have participated in intercomparison exercises such as IPCC AR4) which contain 
structural assumptions partly independent of those made in the Met Office model. 
Projections from each of these alternative models are indicated schematically by 
the coloured dots on Figure 2.11; note that each alternative model is represented 
by a single projection as no ensemble projections were available. Following IPCC 
AR4, we assume each of the alternative models has equal validity, bearing in mind 
that we could not weight the alternative models by re-using the observations 
employed in determining weights for Met Office model variants, as such double-
counting would risk over-constraining our projections. 

We assume that differences between the results of the nearest few variants of 
the Met Office model and each of these alternative models gives a reasonable 
sample of possible differences between the Met Office model and the real world, 
and hence modify our future projections to account for the resulting estimate of 
structural model error. These results are then incorporated into our uncertainty 
analysis, based on a statistical framework devised by Goldstein and Rougier 
(2004), discussed in Chapter 3. This allows us to create a probability distribution 
function accounting for uncertainties arising from both model parameters and 
structural errors, and constrained by observations, shown as the red curve in 
Figure 2.11. 

The above description is an enormously simplified explanation of the 
methodology. As mentioned earlier, the large ensemble of about 280 members, 
described above, can only be run using a model configuration with a simple 
representation of the ocean (known as a slab model, see Box 2.1) which is suitable 
for the simulation of the long-term equilibrium response to an assumed doubling 
of carbon dioxide, but not for the simulation of time-dependent climate change. 
Hence additional time-dependent (that is, continuous from 1950 to 2099) 
simulations are undertaken using the model configuration with atmosphere 
coupled to a full dynamical ocean (HadCM3). The results from these experiments 
are used in a technique for matching equilibrium and time-dependent patterns 
of change so that the very large ensemble of projections using the slab model 
can be timescaled. Further simulations are also needed to sample uncertainties 
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* Because of the way contributions are divided up in Annex 2, this aggregation is a close 
approximation to, but does not exactly cover, all the terms in model uncertainty.

arising from ocean transport, carbon cycle and sulphur cycle processes. Finally, 
to make the projections suitable for impacts and adaptation assessments, we 
use a further ensemble of the Met Office regional climate model (HadRM3) to 
downscale the projections from the global Met Office model to a resolution of 
25 km. A more detailed description of the full methodology is given in Chapter 
3. The methodology involves a number of expert choices (for example, the range 
of values taken for model parameters, and their distribution), the sensitivity to 
which needs to be tested to establish the robustness of the results. Examples of 
such sensitivity tests are given in Annex 2. 

The relative size of the various contributing factors to the total uncertainty (and 
hence to the width of the PDF) will be different for different locations, time 
periods, type of spatial averaging, etc; this is discussed in Annex 2. Figure 2.12 
shows two specific examples of the relative contributions, in the case of changes 
to mean winter precipitation by the 2080s under the Medium emissions scenario, 
for 25 km squares in south-west England and the west of Scotland. Here we have 
combined* the proportions of uncertainties due to model parameter values, 
model structure, the carbon cycle, aerosol physics and ocean physics, and termed 
this contribution model uncertainty. Natural internal variability (chaos) is labelled 
as natural variability. The remaining slice of the pie arises from the timescaling 
and downscaling procedures in the methodology described above. As can be 
seen, in these examples modelling uncertainty dominates the other contributions 
— although this is not true everywhere. A closer time period (the 2020s) would 
show a relatively bigger contribution from natural variability, and different 
choices of variables, locations and emissions scenarios would give different pie 
chart structures. Note that the uncertainty in emissions is not included; this is 
handled by giving different probability projections for each of three emissions 
scenarios as described later in this chapter. 

The presentation of information in probabilistic terms, rather than giving users a 
single projection for a given emissions scenario, is a major change in the nature 
of climate change projections. Whilst they are undoubtedly more complicated to 
grasp conceptually, and their application in practice demands more of the user, 
probabilistic projections are a more honest way of representing the substantial 
uncertainties that are discussed above. Because it is so important to understand, 
we repeat here the point made in Chapter 1, that a probability given in UKCP09 
is not the same as the probability of a given number arising in a game of chance, 
such as rolling dice. Instead, it is a measure of the degree to which a particular 
level of future climate change is consistent with the information (observations 
and model simulations) used in the analysis, that is, the evidence. 

14%

57%

28%

72%

16%11%

Scaling uncertainty

Natural variability

Model uncertainty

South west England Western Scotland Figure 2.12: The relative contributions to 
overall uncertainty in change to winter-
mean precipitation for 25 km squares 
in south west England (left) and west 
Scotland (right) by the 2080s under the 
Medium emissions scenario, from natural 
variability, modelling uncertainty and 
scaling uncertainty. (Contributions do not 
total 100% due to rounding errors.)
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2.4 Uncertainty due to future emissions

Previous UKCIP reports on climate change projections have discussed uncertainty 
due to future emissions, and this uncertainty continues to apply to the climate 
projections in this report. The pathway of future emissions of greenhouse 
gases (CO2, methane, nitrous oxide, etc.) and aerosols (or aerosol precursor 
emissions such as sulphur dioxide) will depend upon many socioeconomic 
factors such as changes in population, GDP, and energy use, and in technical 
developments which might influence carbon intensity (the amount CO2 per unit 
of energy generated). IPCC published a Special Report on Emissions Scenarios 
(SRES) (Nakićenović and Swart, 2000), in which climate-relevant emissions were 
calculated based on a number of storylines, each describing a possible pathway 
of how the world might develop. All scenarios are non-interventionist, that is 
they assume no political action to reduce emissions in order to mitigate climate 
change; differences between them arise purely from different assumptions about 
future socioeconomic changes.

There is no agreed method with which to assign a relative probability to different 
future emissions; SRES made it clear that no relative probability could be 
attached to different emissions scenarios, but neither were they to be assumed as 
equally probable (see Annex 1). (Strictly speaking, being scenarios, they have no 
probability.) This means that the uncertainty due to future emissions cannot be 
incorporated into a probabilistic projection. However, the uncertainty associated 
with future emissions is recognised in UKCP09 by giving probabilistic projections 
which correspond to each of three different emissions scenarios, High, Medium 
and Low. These scenarios correspond to three of the marker scenarios in SRES: 
A1FI, A1B and B1 respectively, as decided following consultation. This is a change 
from UKCIP02, where four emissions scenarios were used corresponding to SRES 
A1FI, A2, B2 and B1. Figure 2.13 shows emissions of CO2 from the scenarios used in 
UKCIP02 and UKCP09. Each scenario also includes emissions of other greenhouse 
gases, and of sulphur dioxide which creates sulphate aerosols that cool climate. 
Although the three UKCP emissions scenarios span the range of marker scenarios 
in SRES, there are additional scenarios, both higher and lower, that they do not 
encompass. 
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Figure 2.13: Global annual CO2 emissions 
(expressed as gigatonnes of carbon) under 
the three IPCC SRES marker scenarios used 
in UKCP09: A1FI (black: High emissions), 
A1B (purple: Medium emissions) and 
B1 (green: Low emissions). Also shown 
dotted are two SRES emissions scenarios 
used in UKCIP02 but not in UKCP09: A2 
(red: Medium-High Emissions) and B2 
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Additional uncertainties arise from the way in which the SRES emissions scenarios 
were developed, both in the underlying storylines of future changes in society, 
economies, technology, etc., and in the way in which the emissions are developed 
from the storylines. These uncertainties are considered here to be part of the 
overall uncertainty in future emissions. 

More detail on the three SRES emissions scenarios, and the socioeconomic futures 
which underlie them, is given in Annex 1. Of course the question of how to 
handle results from the three projections from the different emissions scenarios 
in a risk assessment still remains an issue for users, and this is discussed in the User 
Guidance. 

The differences in projections of global temperature over land which arises from 
different future emissions is illustrated in Figure 2.14, using the average of 17 
variants of the HadCM3 model. Not surprisingly, the High emissions scenario 
results in the greatest warming by 2100, and the Low emissions scenario gives 
the smallest warming. But also evident is the relative insensitivity of warming 
to emissions scenario, over the period to about 2040. This is partly due to the 
smoothing effect of the long effective lifetime of CO2 and the thermal inertia 
of the climate system, but also partly due to the offsetting effects of warming 
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greenhouse gases and cooling sulphate aerosols in the scenarios. However, after 
the middle of the century, projections based on the three emissions scenarios 
become increasingly different. 

2.5 Uncertainties in UKCP09 probabilistic projections  
and future prospects

The procedure used in UKCP09 to convert the ensembles of climate model 
simulations into probabilistic estimates of future climate necessitates a number of 
expert choices and assumptions (see Chapter 3 and Annex 2). This implies that the 
probabilities we specify are themselves uncertain. A system for projecting future 
climate (unlike one for short-range weather forecasting) cannot be verified 
on a large sample of past cases. Nevertheless it is possible to check whether or 
not our probabilistic estimates are robust to reasonable variations within these 
assumptions; results from some such sensitivity tests are shown in Annex 2. 

Although it is important that prospective users understand the limitations and 
caveats, it is also worth emphasising that (a) current models are capable of 
simulating many aspects of global and regional climate with considerable skill 
(see Annex 3); and (b) they do capture, albeit imperfectly, all the major physical 
and biogeochemical processes known to be likely to exert a significant influence 
on global and regional climate over the next 100 yr or so.

As explained in the previous section, there are several components of uncertainty 
which contribute, in varying proportions, to the width of the PDF of change in 
a particular variable (for a given emissions scenario, location, etc.). These can be 
thought of as being in three categories:

•	 uncertainty due to natural variability

•	 statistical uncertainty inherent in the UKCP09 methodology

•	 modelling uncertainty (arising from our lack of understanding of the 
climate system and our inability to model it perfectly) — which includes 
the carbon cycle, sulphur aerosols and ocean heating. 

In the conclusion to Annex 2 we explain how each of these could be reduced in 
future. By initialising models with recent climate, we should be able to reduce 
uncertainty due to natural variability, especially for the next 10–20 yr. For long 
term projections, natural variability represents an irreducible contribution to the 
overall uncertainty. Uncertainty in the statistical methodology could be reduced 
with a sizeable increase in computing power. Modelling uncertainty should 
reduce as our understanding of the climate system and our ability to represent it 
in climate models gets better, although history shows that this is likely to be slow. 

The consequence of these expected improvements is that the shape of a given 
PDF is likely to change in the future. Users need to understand clearly that, if 
they choose to adapt to a climate change corresponding to a specific probability 
level, this is likely to change in future projections — and the changes are likely 
to be greater at the extremes of probability levels (that is, 10 and 90%). If 
our understanding of climate processes, and model representations of them, 
does not change substantially in future, then we foresee a general reduction 
in uncertainties (except that due to long-term natural variability) because of 
improvements in our ability to represent processes currently modelled and we 
would hence expect the shape of the PDF to change, with a reduction in its 
width. However, we do not know in what way this reduction in width will occur; 
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in particular it may not be towards what are the most likely values in UKCP09. 
Although we cannot say what the next generation of PDFs will look like, it is likely 
that the spread of plausible changes they would indicate would be encompassed 
by the corresponding PDFs shown in UKCP09. Thus, in the absence of any major 
change in model projections, users who are incorporating the probabilities given 
in UKCP09 into their decision making are likely to find that their decisions are 
robust to changes in the next generation of projections.

On the other hand, there is also the potential for uncertainties to become 
greater if processes not yet included, or included imperfectly, in the models turn 
out to exert a substantial influence on climate change. Less than a decade ago, 
for example, carbon cycle feedbacks were not included in models, yet these are 
now known not only to change the projections substantially but also to add 
significantly to the uncertainty in them — which is why they are included in 
UKCP09. Further such effects, for example, methane feedbacks from land and 
oceans or the dynamics of ice sheets, may be shown to be important in due 
course. Uncertainties could also widen if future (improved) models reveal that 
a process which is represented in the current generation of models, but with 
a common bias, turns out to exhibit a larger response to man-made forcing 
than current models suggest (see Box 2.1). However, the consistency between 
model simulations and observations of change over the last century provides 
some reassurance that any unknown processes are unlikely to change projections 
fundamentally, at least for the next few decades. 

An obvious follow-up question is: should decisions be made now, based on 
UKCP09 projections, or should they be delayed in the hope that better projections 
will be available in a few years time? The risk of deferring a decision is something 
that can be assessed using the UKCP09 projections. How rapidly will climate 
projections change in the future? Although modellers have improved many 
aspects of their models over the past decade or so, the current range of changes 
over the UK (Figure 2.7) is not significantly narrower than that shown in UKCIP02. 
In practice, the prospects for better projections will depend on which aspects of 
future climate users are most interested in. The width of the PDFs in UKCP09 
are substantial even for the next few decades, due mainly to natural variability, 
and grow larger through the century due to uncertainties in climate feedbacks. 
It may be possible to reduce short-term uncertainties with higher resolution 
models which may simulate better (for example) the North Atlantic storm track, 
and by starting model experiments with the recently observed state of the 
ocean. However, this may not improve projections of (say) changes in surface 
temperature a hundred years ahead; at these lead times improved projections 
would come from more faithful representations of climate feedbacks and the 
carbon cycle in models. Dialogue between decision makers and climate scientists, 
on the potential for emerging research to update projections, will be essential. 
However, we reiterate the key point made earlier that the UKCP09 methodology 
is designed to capture known uncertainties in the climate system built into the 
current generation of climate models, and is the most comprehensive approach 
to do so to date. The UKCP09 projections can make a useful contribution to 
assessing risks posed by future climate; they are appropriate for informing 
decisions on adaptation to long-term climate change which need to be taken on 
the basis of current knowledge, and the uncertainty quantified in them is likely 
to be a conservative estimate. 
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CLIMATE
PROJECTIONSUK 

The Met Office Hadley Centre has designed a methodology to 

provide probabilistic projections for UKCP09 which reflect major 

known uncertainties in relevant climate system processes. The 

method uses large ensembles of climate model projections, which 

are processed using advanced statistical methods to generate 

thousands of plausible climate outcomes, which are then weighted 

using historical observations.

This chapter provides a comprehensive review of the methodology used to 
construct the UKCP09 probabilistic projections, for readers requiring a more 
complete scientific insight into their basis. It is necessarily written assuming a 
higher level of scientific understanding than other chapters, although it does not 
seek to document each aspect of the method to the level of technical detail that 
would appear in a specialist journal paper. Published papers (cited below where 
relevant) are already available for some components of the method, and will 
be provided for remaining components in due course. A technical note will also 
be supplied after the launch of the projections (by October 2009, contingent on 
the demand for post-launch scientific advice from users), giving a mathematical 
description of the methodology to supplement the qualitative description given 
in this chapter. 

Section 3.2 describes the elements of the method, and Section 3.3 provides a 
discussion of the nature, credibility and interpretation of the projections. A short, 
less technical summary of this material can also be found in Chapter 2, Section 
2.2. 

3.1 Introduction

It is clear from Chapters 1 and 2 that future climate over the UK (and elsewhere) 
will be influenced by an array of factors. Some of these affect external forcing of 
climate through changes to the Earth’s radiation balance resulting from natural 
changes (e.g. volcanic eruptions or variations in solar output) or man-made 
changes (emissions of greenhouse gases, aerosols and their precursors), while 
others affect physical and biogeochemical feedback processes which enhance or 
reduce the response to this forcing. In addition, internal climate variability exerts 

3 Construction of probabilistic  
climate projections
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a significant influence on climate, in addition to the effects of forced changes. All 
of these factors introduce uncertainty into projections of future climate because 
none of them can be predicted perfectly. This is due, in general, to imperfect 
knowledge of either the detailed behaviour or the current observed states of the 
relevant systems. 

We currently have no agreed method of quantifying the relative likelihood of 
alternative pathways for future man-made emissions (Section 2.4). For UKCP09, 
we therefore focus on the task of estimating distributions of future changes in 
climate for each of three specific emissions scenarios (SRES A1FI, A1B and B1, 
explained in Section 2.4 and Annex 1, and referred to elsewhere in UKCP09 as 
High, Medium and Low). These scenarios assume no future changes in natural 
external forcing, apart from a prescribed repetition of the 11-yr cycle of solar 
insolation based on past observations. Regional climate changes in response 
to these emissions will be determined by complex interactions between a 
number of Earth System processes, plausible projections of which require the 
use of detailed three-dimensional global climate models (GCMs). As discussed in 
Section 2.3, ensemble approaches provide an obvious method of exploring the 
uncertainties associated with GCM projections. Multimodel ensembles (MMEs, 
e.g. Meehl et al. 2005), constructed by pooling projections from alternative GCMs 
developed at different modelling centres, provide a valuable indication of the 
range of possible future changes. However, stakeholders faced with climate-
sensitive policy and adaptation decisions will typically require more than a simple 
specification of a possible range (Pittock et al. 2001). This is widely recognised in 
the climate science community, and consequently methods have been suggested 
to derive probability distributions for regional changes from MME results (e.g. 
Tebaldi et al. 2005; Greene et al. 2006; Furrer et al. 2007; Watterson, 2008), 
giving estimates of the relative probability of different future outcomes within 
the envelope of possible changes. Motivations for such approaches stem from 
results showing that combining projections from different models can increase 
the skill of historical climate simulations (e.g. Reichler and Kim, 2008) or seasonal 
forecasts (e.g. Hagedorn et al. 2005), because the errors in different models are 
partially independent. Furthermore, the models are assembled from a large 
pool of alternative components, thus sampling to some extent the effects of 
variations in basic structural assumptions such as choice of model grid, numerical 
integration scheme or the fundamental physical assumptions employed in the 
parameterisation of sub-grid scale processes such as convection, boundary layer 
transports, cloud and precipitation formation, etc. (see Box 2.1). However, multi-
model ensembles are rather small in size, consisting typically of 10–20 models, 
some of which might be run several times from different initial states. Also, the 
set of models is assembled on an opportunity basis, not being designed to sample 
systematically some underlying space of possible model formulations (Allen and 
Stainforth, 2002). This creates the need for substantial assumptions in converting 
their results into estimated probabilities for climate change, essentially because it 
is not clear how to identify a distribution of possible outcomes of which the MME 
is a sample. Different studies address this issue in different ways, and therefore 
generate significantly different results (see Tebaldi and Knutti, 2007). 

Another issue is that probabilistic projections are conditional on the set of 
uncertainties sampled in the ensemble simulations. In order to provide a credible 
basis for decision making, a critical prerequisite is that these are designed to 
sample all sources of uncertainty known to be likely to exert a significant influence 
on climate over the time frame of interest (here, the 21st century). For a given 
scenario of future emissions, these would include internal climate variability and 
uncertainties in atmospheric and oceanic processes, which give rise to different 
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realisations of 21st century climate in the latest MME produced for the IPCC AR4 
(Figure 2.5). However additional sources of uncertainty, notably carbon cycle 
feedbacks (Box 2.1) and the uncertainty in downscaling GCM simulations to local 
scales, also need to be considered. In order to produce probabilistic projections 
for UKCP09, we have therefore developed a new approach aimed at sampling the 
key uncertainties systematically, using a purpose-built set of ensemble simulations 
involving several different configurations of the HadCM3 climate model.

The method is based on the notion of the perturbed physics ensemble (PPE), 
in which alternative variants of a single GCM are created by altering the 
values of uncertain model parameters (Murphy et al. 2004; Stainforth et al. 
2005). These parameters control important small scale processes in the model 
(such as the formation and precipitation of cloud droplets, the reflectivity of 
sea ice or the transfer of heat, moisture or momentum between the surface 
and the atmosphere), and are uncertain because we lack sufficiently detailed 
observations or sufficiently precise theoretical understanding to constrain their 
values accurately. A major advantage is that PPEs can be designed to ensure that 
all the key process uncertainties are sampled in a manner consistent with current 
scientific understanding. This is achieved by asking experts to identify which 
model parameters control the key processes, and then to specify distributions 
for the chosen parameters, consistent with the present state of knowledge 
concerning the identified processes. We can then construct a set of ensemble runs 
which select alternative values of the parameters drawn from these distributions, 
ensuring that the relevant uncertainties are well sampled. 

The PPE approach therefore facilitates the construction of probabilistic projections 
consistent with current understanding of model uncertainties (Section 3.3), and 
it is also possible to test the sensitivity of the results to reasonable variations in 
the definition of the space of possible model variants implied by the specified 
distributions for model parameters (see Annex 2). However, the model on which 
the PPE is based (in our case HadCM3) will inevitably contain some structural 
errors in its physical representation of the real climate system, which cannot be 
resolved by varying the model parameters (Murphy et al. 2004). These structural 
errors determine how informative the model simulations are about the real 
system, so it is critical to account for the additional uncertainty implied by their 
presence (Goldstein and Rougier, 2004). We address this by using our PPE results 
to predict the results of members of a multimodel ensemble developed at other 
modelling centres, and containing structural assumptions partially independent 
of HadCM3. This allows us to estimate the effects of structural errors (subject to 
assumptions discussed in Section 3.2.8), and to present probabilistic projections 
which combine information from both perturbed physics and multi-model 
ensemble results.

The methodology is described in Section 3.2, this being a somewhat abridged 
(though also updated) version of that given by Murphy et al. (2007). Section 3.3 
provides a brief summary of key strengths and limitations of our approach, and 
a discussion of how the probabilistic climate change estimates it provides for 
UKCP09 should be interpreted by users. The robustness of these estimates to 
plausible variations in key assumptions is discussed in Annex 2. 

3.2 Methodology

3.2.1 Overview
The method is based on a general statistical framework for the derivation of 
probabilistic projections of real systems from simulations carried out using 
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complex but imperfect models of those systems (Goldstein and Rougier, 
2004; Rougier, 2007). The approach is Bayesian in nature, seeking to estimate 
the relative credibility of different future outcomes by updating subjective 
estimates of uncertainty specified before the experiments with evidence from 
observations. This is achieved by first defining a space of possible variants of 
the model (through distributions for model parameters consistent with expert 
knowledge — see Section 3.1), and then estimating the historical and future 
climate that the model would give if we could afford to run it at every point 
within its parameter space. Then we integrate over the parameter space, 
weighting the projection of future climate at each location according to (a) how 
likely each combination of parameter values was thought to be before the model 
simulations were carried out (prior information), and (b) the relative likelihood 
that each point in parameter space gives a true representation of the real climate 
system (posterior information obtained from estimates of how well the model 
simulates historical climate in practice). This procedure yields probabilities for 
different outcomes of future climate which are determined by a combination 
of the complex interactions between physical and biogeochemical processes 
built into the climate model, expert judgements, structural modelling errors and 
observational constraints. The interpretation of these probabilities is discussed 
further in Section 3.3.

Sections 3.2.2–3.2.12 set out a general method for provision of climate 
projections in any part of the world, at spatial scales skilfully resolved by global 
climate models (typically regions of approximately 106 km2 or larger, though 
this is subject to tests of the validity of its key assumptions as applied in specific 
regions). However the provision of detailed spatial information for UKCP09 also 
relies on the addition of a downscaling procedure based on high resolution 
regional climate model simulations, described in Section 3.2.11. The project was 
allocated considerable computing resources; however these were inevitably 
finite, so the methodology relies on judgements regarding how best to deploy 
these to address the main uncertainties. Assumptions and limitations arising 
from these choices are highlighted in the following sub-sections.

3.2.2 Process uncertainties
The first task is to define the set of Earth System processes likely to contribute 
significant uncertainty in 21st century climate (see Box 2.1). These would clearly 
include surface and atmospheric physical processes (for example water vapour, 
cloud, surface albedo and soil moisture feedbacks continue to be recognised as key 
determinants of global and/or regional climate change (Bony et al. 2006; Soden 
and Held, 2006)). However, other components are also likely to be important. 
Changes in ocean heat transport have potential to influence both global 
and regional changes (Raper et al. 2002; Boer and Yu, 2003), while imperfect 
knowledge of the radiative forcing due to sulphate aerosols (Anderson et al. 2003) 
is recognised as a significant source of uncertainty, both in determining recent 
observed climate change and in predicting future changes (Andreae et al. 2005). 
Uncertainties in the fraction of man-made carbon dioxide emissions likely to 
remain in the atmosphere (due in particular to terrestrial carbon cycle feedbacks) 
have also emerged as an important source of divergence in future projections 
by different models, particularly in changes expected during the second half 
of the 21st century (Cox et al. 2000; Friedlingstein et al. 2006). We therefore 
designed our ensemble experiments to sample uncertainties in the atmosphere, 
ocean, sulphur cycle and terrestrial carbon cycle modules available in the family 
of HadCM3 components. This covers the major known sources of uncertainty in 
climate change out to a century or so ahead. Inevitably, however, limitations of 
computational resource, modelling capability and current understanding imply 
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that some additional drivers of climate change have to be omitted, or included 
without sampling of the associated uncertainty. For example, our carbon cycle 
simulations account for feedbacks associated with ocean as well as terrestrial 
carbon uptake; however, uncertainties in processes affecting oceanic uptake 
are not sampled (see Section 3.2.5). Our simulations do not include forcing from 
carbonaceous aerosols (e.g. Jones et al. 2005), non-aerosol atmospheric chemistry 
(e.g. Johnson et al. 2001) or methane cycle feedbacks (Christensen et al. 2004; 
Archer and Buffett, 2005). The sampling of sulphur cycle feedbacks omits the 
second indirect effect arising from the effects of reduced cloud droplet size 
on precipitation efficiency, and hence cloud persistence, as this process is not 
included in HadCM3, or indeed in most current climate models (see Table 10.1 of 
Meehl et al. 2007) 

Designing ensemble climate projections given finite computing resources
The standard approach to modelling time-dependent climate changes involves 
simulations which run from pre-industrial conditions up to the end of the period 
of interest (say from 1860–2100), specifying observed time-dependent changes 
in external forcing agents (typically man-made changes in greenhouse gases and 
aerosol precursors, and natural variations arising from solar variability and volcanic 
eruptions) up to present day, switching to some future scenario of man-made 
forcings to 2100. The ideal method of sampling modelling uncertainties would 
be to run a very large ensemble of such transient climate change simulations, 
in which all the relevant Earth System modules (atmosphere, ocean, sulphur 
and carbon cycle) are coupled together dynamically, and in which different 
ensemble members sample multiple perturbations to uncertain parameters in all 
modules simultaneously, in such a way as to ensure comprehensive coverage of 
the entire parameter space of each module. Such an experiment would ensure 
that non-linear interactions between all uncertain processes in all modules 
were thoroughly sampled. Unfortunately, such an experiment is well beyond 
the available computing resources, so compromises have to be made based on 
expert judgement of the relative importance of different sources of uncertainty. 
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Figure 3.1 gives a schematic summary of the major components of our strategy 
for sampling modelling uncertainties, through the combination of a number of 
ensemble climate projection experiments. These experiments use several model 
configurations derived from HadCM3 to sample uncertainties in climate change 
during the 21st century, and are described below in Sections 3.2.3–3.2.6, and 
3.2.11. 

3.2.3 Sampling uncertainties in surface and atmospheric processes 
Based on the assessment that surface and atmospheric feedbacks are likely 
to provide the largest source of uncertainty in regional changes during the 
coming century, we focus our resources on sampling the parameter space of 
these processes more comprehensively than those of the ocean, sulphur cycle or 
carbon cycle modules. The atmosphere module of HadCM3, which also includes 
land surface processes and surface–atmosphere exchanges, contains 100 or more 
parameters controlling the model parameterisations of small scale processes 
(which cannot be resolved explicitly on the model grid) in terms of grid box 
variables. It would not be computationally feasible to explore the combined 
effects of perturbing all these parameters, and in any case some parameters exert 
a much more significant influence than others on the simulated outputs of the 
model. Parameterisation experts were therefore asked to identify a subset of 
these which control the main processes most important for the simulation of 
(both global and regional) climate, and then to estimate plausible minimum, 
intermediate and maximum values (accepting that, in general, there would be 
insufficient evidence to provide a unique specification of the likely distribution 
of parameter values between the minimum and maximum values). This exercise 
resulted in a subset of 31 key parameters for perturbation. We assume that 
neglect of possible perturbations to additional parameters does not significantly 
affect the spread of model behaviour generated from our simulations. 

Simulations of equilibrium climate changes in response to doubled CO2

A large ensemble of (at minimum) a few hundred members is required to 
provide a reasonable first-order estimate of how the model behaviour varies 
within this 31-dimensional space, given that both the linear effects of each 
parameter (Murphy et al. 2004), and non-linear interactions between them 
(Stainforth et al. 2005), can have important influences on the model simulations. 
Resource limitations prevented us from undertaking ensembles of transient 
climate change simulations of this size, so the required large ensemble was 
run using a computationally less demanding model configuration (HadSM3) in 
which the atmosphere module is coupled to a simple thermodynamic model 
of the near-surface ocean, which warms or cools in response to surface heat 
exchanges with the atmosphere, and in which horizontal and vertical transport 
within the ocean is prescribed. Such a model configuration is widely accepted 
as a suitable set-up for the simulation of equilibrium climate changes, including 
the climate sensitivity, a standard benchmark of climate change defined as the 
global mean equilibrium response of surface temperature to doubled carbon 
dioxide. However, this simplified approach neglects climate change feedbacks 
involving changes in regional ocean heat transport (Boer and Yu, 2003), and 
implies the need for a method of converting simulated equilibrium changes into 
corresponding estimates of transient climate change. This conversion relies on 
the assumption that a reasonable relationship exists between patterns of time-
dependent and equilibrium climate changes in response to increasing greenhouse 
gas concentrations. Harris et al. (2006) find a close relationship for multiyear 
averages of surface temperature changes, whereas for precipitation the degree 
of correspondence varies significantly with location, though it is quite good for 
the UK and Europe. Note, however, that our conversion method (described in 
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Section 3.2.4) also accounts for random and systematic differences between 
simulated patterns of time-dependent and equilibrium changes. 

An ensemble of 280 HadSM3 experiments was run, sampling the effects of 
perturbing these parameters relative to the settings used in the standard 
published variant of HadCM3 (Gordon et al. 2000). These settings are referred 
to hereafter as the standard parameter values, though a number of these values 
actually correspond to extremes of the ranges identified by experts, due to the 
practice of tuning the model to improve its simulation of certain basic aspects 
of climate, such as the planetary radiation balance. Each experiment consisted 
of a control simulation of recent climate, and a simulation of the response to 
a doubled carbon dioxide concentration, run for a sufficient length of time to 
allow the resulting climate change to reach equilibrium. Murphy et al. (2004) 
carried out an initial ensemble of 53 members in which one parameter was 
perturbed at a time. This was subsequently augmented by a second ensemble of 
128 members containing multiple parameter perturbations chosen to sample a 
wide range of climate sensitivities, achieve skilful simulations of present climate 
and maximise coverage of parameter space (details in Webb et al. 2006). Further 
HadSM3 simulations were then run to achieve improved sampling of parts of 
parameter space influenced by key interactions between parameters (Rougier et 
al. 2008). Together, these ensembles provide the 280 simulations used in UKCP09.

Emulation of equilibrium climate changes in response to doubled CO2

This set of simulations is sufficient to sample the main effects of parameter 
variations within our 31-dimensional space, but not to cover it comprehensively. 
We therefore use a statistical tool called an emulator (e.g. Rougier et al. 2008), 
to help us estimate the values of the required set of climate variables at any 
given point in parameter space. The emulator is trained on the available GCM 
simulations to estimate the results of a set of historical and future climate 
variables required in the production of our probabilistic projections. Each 
climate variable is emulated using an equation which provides a best estimate 
value and associated errors for any combination of model parameter values. 
This is done by using the available GCM simulations to train multiple regression 
relationships which express the required climate variables as functions of the 
model parameters, where the set of regressors capture key interactions between 
the effects of different parameters, as well as the effects of each parameter in 
isolation. Emulation errors are guaranteed to be greater than or equal to internal 
climate variability, and are typically 20–50% larger.

Using the emulator, we are then in a position to integrate over the whole of our 
parameter space, estimating values of both historical climate variables (required 
to weight each location according to how well the GCM would simulate historical 
climate given that particular combination of parameter settings), and future 
climate changes. This integration allows us to estimate observationally constrained 
probabilities for different changes, accounting for model uncertainties. It 
provides the bedrock of our approach to probabilistic projection; however, a 
number of additional elements are required to convert the results into user-
relevant estimates of climate change for specific 21st century periods, and to 
ensure that additional sources of uncertainty are included. These are described 
in Sections 3.2.4–3.2.11. Several aspects of the methodology (in addition to the 
emulation stage described here) require the estimation of uncertainties from 
the residual errors of statistical regression or optimisation procedures. These 
statistical errors are assumed to be Gaussian, and they are all included in the 
uncertainty expressed in the projections. In view of this, several of the UKCP 
variables are transformed prior to the calculation of projected changes, the 
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inverse transformation being applied afterwards to recover projected changes in 
the original variables. These transformations are made either to reduce the risk of 
non-Gaussian error characteristics, or to ensure that absolute bounds in some of 
the projection variables cannot be exceeded by the addition of several sources of 
statistical error. In particular, this ensures that variables presented as percentage 
changes relative to the UKCP baseline period cannot go beyond –100%.

3.2.4 Sampling uncertainties in transient climate change 
The experiments described in Section 3.2.3 provide estimates of the equilibrium 
climate change in response to doubled carbon dioxide, which must be converted 
into estimates of 21st century changes. This is done by running a smaller ensemble 
of simulations of transient climate change, in which the atmosphere module is 
coupled to the full three-dimensional ocean module of HadCM3, which simulates 
horizontal and vertical transport processes dynamically. The configuration of 
HadCM3 for these experiments is as described by Gordon et al. (2000), except that 
the representation of the atmospheric sulphur cycle is upgraded to use the fully 
interactive module of Jones et al. (2001), thus avoiding the need to approximate 
the effect of sulphate aerosol on cloud albedo using an offline calculation (Johns 
et al. 2003). 

The approach involves a 17 member ensemble (PPE_A1B) which samples a subset 
of the atmospheric module parameter combinations used in the larger HadSM3 
ensemble described above. One member used the standard HadCM3 parameter 
settings, the sixteen additional members using combinations of perturbed settings 
chosen to sample a wide range of climate sensitivities, while also sampling a 
wide range of alternative parameter values and providing credible simulations 
of historical climate. Flux adjustments are used to limit simulation biases in sea 
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Figure 3.2: Global, annual mean  
1.5 m temperature anomalies (°C) from 
different perturbed physics ensembles 
of time-dependent climate change under 
SRES A1B emissions, from 1860 to 2100. 
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surface temperature and salinity. The sampling of parameter space and climate 
sensitivity, and the calculation of flux adjustments, was based on (but updated 
from) an earlier PPE of HadCM3 variants described by Collins et al. (2006). 
Perturbed model variants in PPE_A1B give global simulations of historical climate 
of comparable quality to the standard model variant, as was also found in the 
Collins et al (2006) experiment; however, improvements to the flux adjustment 
technique in PPE_A1B removed biases in sea surface temperature and salinity 
found in the North Atlantic and Arctic Oceans in the simulations of Collins et al. 
By reducing regional systematic errors the flux adjustment process helps to ensure 
that the ensemble projects credible regional climate changes, and it also allows 
the effects of parameter perturbations on the transient response to be explored 
without being excessively constrained by the need to achieve precise balance in 
the planetary radiation budget. The simulations were started in the year 1860, 
and driven up to 2000 by historical time series of concentrations of greenhouse 
gases (carbon dioxide, methane, nitrous oxide, chlorofluorocarbons and ozone), 
sulphur emissions, and reconstructions of variations in solar activity and volcanic 
aerosol. From 2000 to 2100 they were driven by future concentrations of 
greenhouse gases and sulphur emissions from the SRES A1B scenario. The results 
show a substantial spread in projections of future global temperature rise (Figure 
3.2). Here, and in Sections 3.2.5–3.2.12 we describe the entire methodology as 
applied in the case of the A1B scenario. Extensions to cover the A1FI and B1 
scenarios are summarised in Section 3.2.13.

Estimating transient changes from equilibrium changes using timescaling
While these 17 transient simulations provide a limited sample of direct realisations 
of time-dependent climate change, our methodology requires that we estimate 
the time-dependent response from any point in the model parameter space 
referred to above. This is achieved by developing relationships between the 
equilibrium response of HadSM3, and the transient response of HadCM3, using 
the PPE_A1B HadCM3 simulations and the 17 member subset of the larger 
HadSM3 ensemble containing corresponding parameter perturbations to the 
PPE_A1B members. Once calibrated, these relationships can then be used to 
estimate the regional transient response of relevant climate variables (see Table 
1.1) that would be obtained with any desired combination of parameter settings, 
thus providing the basis for the generation of probabilities for regional, time-
dependent climate change through the integration over model parameter space 
referred to above. 

The method, which we term timescaling, has been developed from earlier 
work by Harris et al. (2006): It involves normalising the regional equilibrium 
response of HadSM3 simulations by their climate sensitivities, and then scaling 
the normalised response according to the transient response of global average 
surface temperature, which is simulated using a simple climate model tuned to 
the climate sensitivity of the relevant ensemble member. The simple model is 
based on that of Rowntree (1998) and simulates globally-averaged land and 
ocean surface temperatures in response to imposed radiative forcing anomalies, 
representing vertical heat transfer in the ocean via a globally averaged heat 
diffusion equation, modified to include upwelling and downwelling following 
Schlesinger et al. (1997). This procedure provides time-dependent estimates of 
regional climate change, which are modified by a correction term (also scaled 
according to global mean temperature) which allows for differences between 
the characteristic patterns of equilibrium and transient climate change arising 
from the effects of oceanic thermal inertia and changes in ocean circulation. 
In principle the correction term is liable to depend on the values of the model 
parameters; however, we neglect such dependencies as we do not possess enough 
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transient HadCM3 simulations to quantify them robustly. Also, this approach will 
not be able to replicate time-dependent responses which are non-linearly related 
to changes in global mean temperature, for example over northern Australia, 
where precipitation initially increases with global temperature in our perturbed 
physics simulations, but later reduces as the global response becomes larger 
(Harris et al. 2006). Over the UK, we do not see evidence of substantial non-
linearities of this nature. However the method does include an error term which 
captures bias and uncertainty in our timescaled estimates of regional changes. 
This adjusts the projections to allow for the estimated effects of errors associated 
with our assumption in that the transient response is linearly related to global 
temperature, and also accounts for the effects of internal climate variability, 
errors in our simple climate model projections of the global temperature 
response found in HadCM3 simulations, and our assumption that the correction 
term is invariant across parameter space. It is assumed to take the form of a 
Gaussian distribution, noting that some variables are transformed to ensure that 
this assumption is reasonable (see Section 3.2.3). The time-dependent means and 
variances of these distributions are calculated by using the PPE_A1B simulations 
to verify timescaled estimates derived from equilibrium changes simulated 
by HadSM3 ensemble members containing corresponding sets of parameter 
perturbations. The correction term is also obtained in this fashion.

The timescaling process is illustrated by Figure 3.3(a), which shows projections 
of summer temperature changes over the global climate model grid box cor-
responding to Wales from the 17 HadCM3 projections (left panel), compared 
against corresponding timescaled projections (right panel). The coloured lines in 
the right panel represent projections obtained by scaling the relevant HadSM3 
equilibrium responses according to global mean temperature, and adding the 
correction term accounting for differences between the characteristic patterns 
of equilibrium and transient climate change (see above). These lines can be in-
terpreted as estimates of the forced transient component of climate change, in 
the absence of non-linear dependencies of the forced response on global mean 
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Figure 3.3(a): Left panel shows projected 
changes in 30-yr averages of surface 
temperature (°C) relative to 1961–1990 
over the global climate model grid box 
corresponding to Wales, in summer, for 
the 17 members of the PPE_A1B ensemble 
of perturbed HadCM3 variants. Right 
panel shows estimates of the changes 
derived from the timescaling procedure 
described in the text (coloured lines).
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of timescaling uncertainties, defined as 
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of the 17 HadCM3 projections in turn, 
using statistics obtained by calibrating the 
procedure using equilibrium and time-
dependent climate changes from the other 
16 ensemble members.
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temperature. In this case, the envelope of timescaled projections corresponds 
quite closely with that defined by the climate model projections. However the 
smoothed coloured lines of the timescaled estimates deviate in detail from their 
climate model counterparts at any given time period, due to the effects of inter-
nal variability, non-linear dependencies on global temperature, and other uncer-
tainties in the timescaling process. For this reason, the order of the coloured lines 
in the timescaled estimates differs somewhat from their HadCM3 counterparts, at 
any given time level. However, the effects of these timescaling errors (shown sep-
arately as grey shading in Figure 3.3(a)) are included in the UKCP09 projections 
as described above, by adding time-dependent uncertainties sampled from our 
error estimates to the basic timescaled projections shown by the coloured lines. 
Results for winter precipitation changes (Figure 3.3(b)) are similar in character, 
except that the envelope of climate model projections is significantly wider than 
that of the timescaled projections out to about the 2050s. This is mainly because 
the forced climate change for the next few decades (estimated in isolation by the 
coloured lines in the right panel) is relatively small compared to the component 
of the spread in the climate model projections explained by internal variabil-
ity. However, we emphasise that the timescaling error term (grey shading) does 
capture the effects of internal variability, so this component of uncertainty is in-
cluded in the full envelope of timescaled projections (not shown in Figures 3.3(a) 
and (b), but obtained by combining the coloured lines and the grey shading).

While changes in well-mixed greenhouse gases such as carbon dioxide give rise 
to spatially uniform changes in radiative forcing, this is not the case for other 
forcing agents included in our transient simulations (historical and future changes 
in sulphate aerosols and ozone, and historical changes in solar and volcanic 
activity). The forcing due to sulphate aerosols, in particular, is concentrated 
over and downstream of industrialised regions of the northern hemisphere 
(Forster et al. 2007). The patterns of climate change in response to spatially 
heterogeneous forcings cannot be assumed to follow that found in response 
to well-mixed greenhouse gases. We account for this by running an additional 
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17 member perturbed physics ensemble of HadCM3 simulations from 1860 to 
2100, identical to PPE_A1B except that concentrations of well-mixed greenhouse 
gases are held fixed at pre-industrial levels, allowing the climate response to the 
heterogeneous aspects of the forcing to be isolated. Results from this ensemble 
(PPE_A1B_NOGHG) are used to estimate the regional response to these forcings 
(per unit global temperature change) as a function of time, which then forms a 
potential additional contribution to our timescaled estimates of transient climate 
change. We do not possess sufficient simulations to estimate how the normalised 
response to heterogeneous forcing agents might vary across the model parameter 
space. However, future changes in forcing in the emissions scenarios considered 
for UKCP09 are dominated by well-mixed greenhouse gases, and for these we do 
estimate variations across parameter space in greater detail. 

In practice, the added refinement of including a separate term for the 
heterogeneous forcings is found to be important for some variables, but 
not others. Use of this term is therefore determined on a case-by-case basis, 
dependent on whether its inclusion leads to a statistically significant reduction in 
the uncertainty associated with our climate change estimates. 

3.2.5 Sampling uncertainties in additional Earth System processes
We sample uncertainties in ocean, sulphur cycle and terrestrial carbon cycle 
processes by running three additional perturbed physics ensembles, each 
consisting of 16 perturbed variants of HadCM3. Each of these ensembles is driven 
from 1860 to 2100 by the same time series of forcing agents used in PPE_A1B. In 
each of these ensembles parameters in the module targeted for perturbation are 
varied within ranges obtained by consultation with experts, while parameters 
in other modules are held fixed at values used in the standard model variant. 
In all cases parameter combinations were determined using a Latin Hypercube 
sampling design (McKay et al. 1979).

Ocean transport
The first ensemble addresses uncertainties in ocean transport, building on 
preliminary simulations reported by Collins et al. (2007). The ensemble members 
sample perturbations to parameters controlling various aspects of the resolved 
and subgrid-scale transports of heat, salt and momentum in both the horizontal 
and vertical. In these simulations, future global mean temperature rise shows a 
limited dependence on these ocean parameters (Figure 3.2), much smaller than 
the uncertainties arising from atmospheric processes. 

Sulphur cycle
The second ensemble samples uncertainties in atmospheric sulphur cycle 
processes, represented in HadCM3 using the module described by Jones et al. 
(2001). It simulates sulphate aerosol concentrations from prescribed emission 
fields of anthropogenic sulphur dioxide (SO2), natural dimethyl sulphide and 
tropospheric sulphur arising from quasi-regular volcanic eruptions. Three modes 
of aerosol are represented, comprising sulphate dissolved in cloud droplets plus 
two free particle modes. The model simulates production of sulphate by oxidation 
of SO2, transport within the atmosphere, rain out and transfers between the 
different aerosol modes. The atmospheric sulphur burden affects radiation via 
the direct (cooling) influence of scattering and absorption of incoming solar 
radiation, and through increases in cloud albedo resulting from the action 
of sulphate aerosols as cloud condensation nuclei (the first indirect effect). 
As mentioned earlier, the second indirect effect, in which reductions in cloud 
droplet size reduce precipitation efficiency and increase cloud lifetime, is not 
included since the calculation of precipitation in HadCM3 does not allow for any 
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dependence on cloud droplet number concentrations. The 16 member ensemble 
of HadCM3 simulations samples simultaneous perturbations to parameters 
controlling key aspects of the processes outlined above, including emissions of 
aerosol precursors. All ensemble members used the settings for atmosphere and 
ocean module parameters employed in the standard variant of HadCM3. This 
ensemble simulates a wide range of atmospheric sulphur burdens (although 
perturbations to some of the atmosphere module parameters in PPE_A1B and 
PPE_A1B_NOGHG also have a significant impact on these). The impact of sulphur 
cycle perturbations on global mean temperature changes is modest compared 
with that in PPE_A1B (Figure 3.2). 

Terrestrial ecosystem
Uncertainties in terrestrial ecosystem processes are sampled in a third ensemble in 
which the TRIFFID dynamic vegetation module of Cox (2001) is added to HadCM3, 
to form an Earth System model HadCM3C. TRIFFID simulates soil carbon, and the 
growth and replacement of five functional types of vegetation (broadleaf tree, 
needleleaf tree, C3 grass, C4 grass and shrubs). The functional types vary according 
to the net available carbon and competition between plant types, parameterised 
using empirical relationships. Soil carbon can be increased by litterfall and 
is returned to the atmosphere by microbial respiration, which depends on 
temperature and soil moisture. CO2 fluxes at the land–atmosphere interface are 
determined by photosynthesis and plant and microbial respiration. In order to 
simulate carbon fluxes at the ocean–atmosphere interface, an ocean carbon cycle 
module (Cox et al. 2001) is also included. This simulates exchange of gaseous CO2 
with the atmosphere, the transport of dissolved inorganic carbon and cycling 
of carbon by marine biota via a nutrient–phytoplankton–zooplankton–detritus 
ecosystem module (Palmer and Totterdell, 2001) that accounts for the effects of 
light penetration, alkalinity and nutrient availability on biological carbon uptake. 
In previous carbon cycle experiments using HadCM3 (e.g. Cox et al. 2000; Jones et 
al. 2003), the horizontal resolution of the ocean module was reduced; however, 
here we maintain the standard resolution of 1.25 x 1.25 degrees in order to 
ensure that our carbon cycle simulations are physically consistent with the other 
coupled ocean–atmosphere ensembles included in our methodology.

A 16-member ensemble was produced, sampling simultaneous perturbations to 
TRIFFID parameters controlling soil carbon and the five vegetation functional 
types. A further ensemble member with standard TRIFFID settings was also run. 
Parameters in the ocean carbon cycle module were held fixed at standard values 
in these simulations, because resource and time limitations made it impractical 
to perform the ensemble of long preliminary integrations (e.g. Cox et al. 2001) 
which would have been required to achieve equilibrium in ocean–atmosphere 
carbon fluxes. The specification of forcing agents was as in PPE_A1B, except that 
CO2 was input as a time series of emissions rather than concentrations, in order 
to allow carbon cycle feedbacks to operate. This ensemble simulates a substantial 
range of future changes in CO2 concentration (669–1130 ppm at the year 2100, 
for example), and therefore of global mean surface temperature (Figure 3.2), 
comparable to the spread found by sampling physical surface and atmospheric 
processes in PPE_A1B. Uncertainties in the ocean carbon sink are not sampled in 
our simulations (as explained above); however, the spread of responses obtained 
is similar to that found in a previous multi-model ensemble of carbon cycle 
simulations carried out in the Coupled Climate Carbon Cycle Intercomparison 
Project (C4MIP) by Friedlingstein et al. (2006). The C4MIP ensemble sampled 
variations in both terrestrial and ocean carbon cycle processes and found that 
climate-induced changes in carbon storage were explained mainly by the former. 
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In addition to their impacts on global mean surface temperature (Figure 3.2), 
the ocean, sulphur cycle and terrestrial ecosystem PPEs all show some statistically 
significant impacts on patterns of regional change in some parts of the world. For 
example, the sulphur cycle PPE shows a significant spread in temperature changes 
in the Arctic Ocean and over interior regions of the northern Eurasian landmass 
(because surface albedo feedbacks amplify the effects of perturbations to the 
response of surface temperature), and in precipitation changes over tropical 
regions of the central and western Pacific Ocean (due to the strong coupling with 
sea surface temperature changes in these regions). The ocean PPE shows similar 
impacts over the Arctic and tropical Pacific Oceans, while the terrestrial carbon 
cycle PPE shows a large spread of precipitation changes over Amazonia, due to 
the regional influence of ecosystem-atmosphere interactions (Betts et al. 2004). 
However the impacts on changes over the UK (beyond those directly explained 
by variations in the global mean warming) turn out to be relatively minor. 

3.2.6 Combining uncertainties in different Earth System processes
The Earth System ensembles described in Section 3.2.5 are not large enough to 
provide a basis for training an emulator capable of estimating the model re-
sponse at any point in the parameter space of ocean, sulphur cycle or carbon 
cycle processes (cf Section 3.2.3). This prevents us from including the relevant 
uncertainties via a formal application of Bayes theorem in an integration over 
the model parameter space (cf. Section 3.2.7 below). However, we do include 
uncertainty estimates obtained from these ensembles in a simpler manner, by 
generalising the timescaling technique described in Section 3.2.4. This is done 
by configuring the simple climate model used in timescaling to include sulphate 
aerosol forcing, and simple globally averaged parameterisations of processes as-
sociated with the effects of terrestrial carbon cycle feedbacks on the atmospheric 
CO2 concentration. When running the simple model to estimate the transient 
climate response for some specified set of surface and atmospheric HadCM3 pa-
rameters, we sample the effects of additional Earth System processes by selecting 
from a distribution of possible values for the simple model parameters control-
ling global mean ocean heat uptake, sulphate forcing or CO2 concentration. For 
heat uptake, this is done by calculating values of ocean diffusivity for each of 
the 17 members of our ocean perturbed physics ensemble (Section 3.2.5), and 
also from 20 alternative simulations derived from the multi-model ensemble of 
coupled ocean-atmosphere models submitted to the IPCC AR4. The multi-model 
ensemble values were taken from the 23 models listed in Table 8.1 of Randall et 
al. (2007), omitting two models because data required for the calculation were 
not available, and one because the wrong climate change forcing was applied in 
the relevant experiment. Inclusion of the multi-model ensemble results enabled 
us to account in a simple way for structural uncertainties in ocean transport pro 
cesses not sampled in our perturbed ocean ensemble. Values are then selected 
from these 37 possible values, assuming each to be equally plausible. 

Including sulphate aerosol forcing uncertainties in timescaled projections 
For sulphate aerosol forcing the approach is somewhat more complicated, because 
variations in physical atmospheric parameters (particularly those associated with 
cloud) are found to exert a significant influence on the forcing, in addition to 
variations in parameters directly associated with the sulphur cycle. Furthermore, 
a significant relationship between global mean aerosol forcing and climate 
sensitivity was found in our PPE_A1B_NOGHG ensemble (low sensitivity model 
variants tend to simulate high levels of low cloud, and therefore simulate larger 
changes in forcing in response to aerosols). We accounted for these factors by 
developing a regression relationship between a transformed function of aerosol 
forcing, and global climate feedback (the reciprocal of climate sensitivity). The 
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distribution of forcing values is Gaussian in the transformed units. Variations in 
transformed aerosol forcing, diagnosed from the 16-member perturbed sulphur 
cycle ensemble, were assumed independent of atmospheric perturbations and 
added to each member of our PPE_A1B_NOGHG ensemble, thus forming a 
dataset for regression which sampled uncertainty arising from both atmospheric 
and sulphur cycle processes. When running the simple climate model for a 
given location in parameter space (and hence a given climate sensitivity), we 
then sampled alternative aerosol forcing values from the error statistics of the 
regression relationship. This method gives a distribution of aerosol forcing values 
for present day climate (relative to pre-industrial conditions) similar to that given 
in the IPCC AR4 (see Figure 2.20 of Forster et al. 2007), based on the statistical 
assessment of the uncertainty of radiative forcing mechanisms documented by 
Haywood and Schulz (2007). 

Including carbon cycle feedback uncertainties in timescaled projections 
Given that carbon cycle uncertainties provide a leading order contribution to 
the uncertainty in global mean changes, and recognising that our perturbed 
physics ensemble does not sample uncertainties associated with structural carbon 
cycle assumptions in HadCM3C, we also include results from the C4MIP multi-
model simulations in our sampling of possible feedbacks. We performed a pre-
screening exercise in which the historical simulations of global carbon budget 
components (fraction of anthropogenic emissions stored in atmosphere, land 
and ocean) were compared with an observational constraint based on records 
of atmospheric CO2 increase, estimates of total emissions (fossil fuel plus land 
use emissions) and the oceanic uptake of anthropogenic CO2 (Sabine et al. 2004). 
Two of the perturbed physics simulations and one of the C4MIP simulations were 
found to be inconsistent with the spread of plausible values implied by estimates 
of observational uncertainty, so these were excluded. We also excluded results of 
the HadCM3LC model contributed to C4MIP, as this model is strongly related to 
that used for our perturbed physics simulations. This left 9 members of the C4MIP 
ensemble and 15 members of the perturbed physics ensembles, whose simulated 
global mean feedbacks were sampled in the timescaling procedure, assuming all 
24 estimates to be equally plausible. 

The parameterisation of carbon cycle feedbacks in the simple climate model 
contains explicit temperature dependences, allowing the (significant) effect 
of variations in the global temperature response on the global mean carbon 
cycle response to be captured (e.g. Andreae et al. 2005). This is achieved using 
globally averaged calculations of changes to the vegetation and soil carbon 
stores consistent with the main features of the corresponding calculations used 
in the terrestrial ecosystem module of HadCM3 (Jones et al. 2003), which contains 
temperature-dependent parameterisations of photosynthesis and plant and soil 
respiration. With the exception of this carbon cycle–temperature relationship, 
and the aerosol forcing–climate sensitivity relationship described above, our 
timescaling method does not account for non-linear interactions between the 
global feedbacks in different Earth System modules. This is because time and 
resource limitations prevented us from running HadCM3 ensemble simulations 
in which parameters in all component modules were varied simultaneously. The 
UKCP09 projections are conditional on the assumption that additional non-linear 
interactions are likely to be small compared with the two significant known 
relationships referred to above. This issue is a subject of current research.

Potential contributions of ocean, sulphur cycle and carbon cycle processes to 
uncertainties in regional climate changes (beyond the effects directly attributable 
to uncertainties in global mean surface temperature) are not accounted for in 
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the generalised timescaling technique. This is because results from the relevant 
ensembles indicate that such contributions would be relatively minor for changes 
over the UK (Section 3.2.5), and also because quantification of the impacts of 
non-linear interactions is beyond the scope of the experimental design for 
UKCP09 (see above). In some regions neglect of such regional effects would not 
be realistic, a good example being Amazonia where carbon release from forest 
dieback is dependent on regional changes in precipitation (Betts et al. 2004). The 
extent to which the UKCP methodology could be applied in other parts of the 
world will therefore depend upon careful evaluation of the potential impacts 
of regional effects not covered by our timescaling procedure, in addition to the 
validity of further assumptions required by our technique, such as the use of a 
linear scaling to global mean temperature changes (see Section 3.2.4). 

3.2.7 Probabilistic projections of the equilibrium response  
to doubled CO2

In Sections 3.2.7–3.2.9 we describe how we obtain probabilistic projections for 
the equilibrium response to doubled CO2 concentration. This exercise provides 
marginal probabilities for changes in individual variables, or joint probabilities 
for changes in two or more variables (e.g. temperature and precipitation in 
some specific region), at the spatial scale of HadSM3 grid boxes (approximately 
300 x 300 km2). However it is also necessary to apply our timescaling procedure 
(Sections 3.2.4 and 3.2.6), and the downscaling procedure (described in Section 
3.2.11 below), to obtain estimates of 21st century changes at the local scales 
required by UKCP09 users. The combination of these elements is outlined later, 
in Section 3.2.12.

Probabilistic projections are obtained using the Bayesian statistical framework 
introduced in Section 3.2.1, described here in general terms, omitting technical 
details. The calculation is based on values of variables of historical and future 
climate obtained from a climate model whose outputs depend upon a set of 
parameters controlling processes judged to be important determinants of the 
quality of its simulations. Observed values of the historical variables and their 
associated errors are also required, in order to weight model outputs according 
to their quality. Probabilities for different values of future variables are obtained 
by applying Bayes Theorem through an integration over the model parameter 
space of surface and atmospheric processes (henceforth referred to as parameter 
space), as outlined in Section 3.2.1 (see Rougier (2007) for more details). However, 
we cannot afford to run the climate model itself at every point within this space, 
so we train an emulator to replicate the model outputs (see Section 3.2.3), and 
then use the emulator to estimate values of the required variables for any given 
combination of parameter settings. 

The Bayesian framework allows (and requires) us to account for relationships 
between the various elements involved in the calculation. Some simplifying as-
sumptions are necessary to make the calculation tractable: for example there is 
no obvious reason to expect that errors in emulated estimates of climate model 
output would be correlated with errors in observed estimates of the true his-
torical climate, so we assume these to be independent. On the other hand, our 
method relies on the basic assumption that relationships can be found between 
variations across parameter space in the modelled values of historical climate 
and future changes (e.g. Piani et al. 2005; Knutti et al. 2006), so we would want 
to account for these in the calculation. In our Bayesian approach, this is achieved 
by calculating weights for different combinations of parameter values accord-
ing to how well the model simulates a set of historical observations given those 
values. These posterior weights constrain the model parameter space to regions 
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giving rise to relatively skilful simulations, and thus also constrain projections 
of future climate variables, to an extent which depends on how strongly the 
future variables are controlled by values of model parameters. This helps to re-
duce the dependence of the projections on expert prior choices imposed by the 
experimenters (see Annex 2). Also, the simulated changes, and their associated 
uncertainties, can be adjusted according to the errors in the simulated values of 
historical observables, according to the strengths of the correlations between 
them. This ability to pick out key relationships from a range of possible influences 
is a critical strength of the procedure, because future changes in climate over the 
UK (indeed in any region) are influenced by an array of feedback processes, some 
of which are local in origin, and some of which involve remote influences. Row-
ell and Jones (2006) demonstrate this in relation to future summer drying over 
Europe, for example, showing that this is affected by large scale thermodynamic 
feedbacks, changes in atmospheric circulation, and regional changes in soil mois-
ture influenced by surface–atmosphere coupling in summer, and also by changes 
in the annual cycle of surface hydrological components dependent on changes 
in temperature, snowmelt and precipitation at other times of the year. Thus it 
would not be possible to determine the credibility of projected future changes 
by focusing solely, for example, on simulated values of historical metrics limited 
to the region and season of interest (e.g. Moberg and Jones, 2004). The set of ob-
servations used to constrain the UKCP09 projections is described in Section 3.2.9. 

The complex and interconnected nature of changes in different variables 
(illustrated by the example above) also suggests that it would be difficult to 
justify assigning different weights to projections of different variables from 
the same model variant. Our statistical framework reflects this, being based on 
the assumption that each model variant should be assigned a universal weight 
which reflects the quality of its ability to simulate climate as a whole. This weight 
quantifies the relative likelihood that a given combination of parameter settings 
provides a representation of climate system processes consistent with our 
observations of the real world. The likelihood depends on the difference between 
the emulated values of our set of historical variables and the corresponding 
observations, accounting for covariances between the variables, and normalized 
by the uncertainty in the differences, obtained by adding contributions from 
emulator error, observational error and structural modelling error. The sizes of 
the covariances determine how rapidly the weight drops as the emulated values 
move away from observations. The structural error arises from the recognition 
that HadCM3 (like any climate model) contains certain fundamental biases 
which cannot be resolved by varying its uncertain parameters, so the framework 
includes a key term called discrepancy which captures the additional uncertainty 
in model projections arising from such errors. 

In our integration over model parameter space, we assume that climate model 
parameters are a priori equally likely within the middle 75% of the range 
estimated by experts, and that the probability drops linearly to zero at the 
minimum and maximum values. It is recognised that alternative and equally 
defensible prior distributions could be proposed (e.g. Rougier and Sexton, 2007); 
however, the results are quite robust to a number of reasonable alternative 
choices (see Annex 2).

3.2.8 Structural model errors (discrepancy)
What is discrepancy, and why is it important?
The discrepancy term, introduced in Section 3.2.7, is a measure of how informative 
the climate model is about the real world. Formally, it represents the mismatch we 
would find between the model and the real world if we could locate precisely the 
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combination of model parameter settings giving the best overall simulation of 
climate that the model is capable of providing. Discrepancy applies to simulations 
of both historical and future climate. It is also a prior input to the Bayesian 
framework, and should therefore be specified using a method as independent 
as possible from the specific observations used to weight the (emulated) 
climate model projections, in order to avoid double counting the observations. 
Discrepancy is itself uncertain, and is therefore specified as a distribution (in 
common with other uncertain inputs to the Bayesian calculation). Values must 
be specified for all historical and future variables involved in the calculation, 
including covariances between the variables. Discrepancy in historical variables 
focuses the weight on the well modelled variables and prevents small variations 
in the poorly modelled variables from having an unduly large impact on the 
weighting. Discrepancy in future variables increases the uncertainty associated 
with the projections, and mitigates the risk of making overconfident projections. 
Specifying the discrepancy is an extremely demanding task in principle, given the 
inherent difficulty of anticipating the effects on particular climate variables of 
missing or inadequately understood processes, and their complex interactions. 

Estimation of discrepancy in UKCP09
In practice we estimate discrepancy by using results from our large ensemble 
of HadSM3 simulations of present day and doubled CO2 climates (see Section 
3.2.3) to predict the results of an ensemble of different climate models, whose 
members consist of coupled atmosphere–mixed layer ocean (slab) models of 
similar complexity and credibility as HadSM3, but employing different basic 
assumptions in some of their parameterisations of physical processes. Note that 
this exercise must be carried out using ensembles of slab model simulations, 
rather than ensembles of coupled models containing a full dynamical ocean 
(e.g. Figure 3.2), because our perturbed physics ensembles using HadCM3 are 
too small to support a direct application of the Bayesian framework to their 
results. Nevertheless, our approach confers the benefit of allowing us to provide 
projections which combine results from perturbed physics and multi-model 
ensembles, hence adjusting the projections to account for likely biases arising 
from structural errors in HadCM3. It is based on the judgement that the effects 
of structural differences between models can be assumed to provide reasonable 
a priori estimates of possible structural differences between HadSM3 and the 
real world. We take a given multi-model ensemble member as a proxy for the 
true climate, and use our emulator of HadSM3 to locate a point in the HadSM3 
parameter space which achieves the best multivariate fit between HadSM3 and 
the multi-model member, based on a set of climate variables described in Section 
3.2.9. The fit is determined using an optimisation procedure starting from a 
randomly-selected initial point in parameter space. The difference represents one 
estimate of discrepancy, under the above judgement. This process is repeated 
four times for each multi-model member, in order to sample the sensitivity of 
the optimisation process to the initial point. These difference estimates are 
then pooled across the multimodel ensemble, giving a sample of four times the 
number of ensemble members. The mean of these is taken as our estimate of 
the mean value of discrepancy, and the covariances of the differences about the 
ensemble mean serve as our estimate of the discrepancy covariance matrix, after 
allowing for a component due to internal climate variability.

This approach allows us to provide projections combining results from perturbed 
physics and multi-model ensembles, thus avoiding exclusive reliance on results 
from the Hadley Centre model. The slab models used in the discrepancy 
calculation were selected from those contributed to the IPCC AR4 (Randall et 
al. 2007), and the Cloud Feedback Model Intercomparison Project (CFMIP) (e.g. 
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Webb et al. 2006), using data interpolated to the HadSM3 model grid. Some 
models could not be used as insufficient data was available, and one model 
was excluded because the design of its simulation of the response to doubled 
CO2 excluded the contribution of surface albedo changes from melting sea-ice, 
this being a process of known importance included in the other models. In the 
remaining 14 models, data was available for nearly all of the required variables, 
but with isolated exceptions (mainly daily data required to calculate the required 
indicators of temperature and precipitation extremes, which was missing from 
five of the models). Here, values of the missing variables were estimated from 
inter-variable correlations derived from the multi-model ensemble. In two cases 
where more than one model was potentially available from a given institute, 
statistical tests showed that these models could not reasonably be assumed to 
give quasi-independent estimates of model error, so the model variant thought to 
be less credible (based on criteria of lower resolution in one case, and published 
assessments by the relevant modelling centre in the other) was excluded. This left 
12 models to be used in the discrepancy calculation (Table 3.1). 

Model Name Modelling Centre Source

UIUC University of Illinois, USA CFMIP

MIROC3.2medres Centre for Climate System Research, 
National Institute for Environmental 
Studies, Frontier Research Centre for 
Global Change, Japan

CFMIP

MIROC3.2hires Centre for Climate System Research, 
National Institute for Environmental 
Studies, Frontier Research Centre for 
Global Change, Japan

IPCC

HadGSM1 Met Office Hadley Centre, UK IPCC

CGCM3.1 T63 Canadian Centre for Climate 
Modelling and Analysis, Canada

IPCC

CSIRO-MK3.0 Commonwealth Scientific and 
Industrial Research Organisation, 
Australia

IPCC

ECHAM5/MPI-OM Max Planck Institute for 
Meteorology, Germany

IPCC

GFDL-CM2.0 Geophysical Fluid Dynamics 
Laboratory, USA

IPCC

GISS-ER Goddard Institute for Space Studies, 
USA

IPCC

INM-CM3.0 Institute for Numerical Mathematics, 
Russia

IPCC

MRI-CGCM2.3.2 Meteorological Research Institute, 
Japan

IPCC

NCAR-CCSM3.0 National Center for Atmospheric 
Research, USA

IPCC

Table 3.1: Climate models used in 
the estimation of structural errors 
(discrepancy). Randall et al. (2007) 
(Table 8.1 therein) and Webb et al. 
(2006) summarise some basic features 
of models sourced from IPCC and CFMIP, 
respectively, and also provide supporting 
references for papers giving detailed 
model descriptions. Note that Table 8.1 of 
Randall et al. describes dynamical ocean–
atmosphere configurations of the models, 
from which are derived the mixed layer 
ocean–atmosphere (slab) configurations 
used here.
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Assumptions and limitations
Whilst this method of calculating discrepancy provides an appropriate means of 
quantifying uncertainties in projected future changes consistent with current 
climate modelling technology, it is important to recognise caveats associated 
with the approach. Firstly, it assumes that the structural errors in different 
models can be taken to be independent. Whilst there is evidence for a degree of 
independence (for example, model errors in multiyear climate averages reduce 
significantly when ensembles of different models are averaged together (e.g. 
Lambert and Boer, 2001; Reichler and Kim, 2008)), there is also evidence that 
some errors are common to all models (see Annex 3), due to shared limitations 
such as insufficient resolution or the widespread adoption of an imperfect 
parameterisation scheme. From this perspective, our estimates of discrepancy 
can be viewed as a likely lower bound to the true level of uncertainty associated 
with structural model errors. However, another caveat is that we do not take into 
account variations in the credibility of different multi-model ensemble members 
when calculating discrepancy, partly because there is no widely recognized 
means of quantifying such variations (Randall et al. 2007), and partly because 
such an exercise would introduce an element of double counting in the use of 
observations in our Bayesian framework. Nevertheless, the assumption of equal 
credibility carries the risk that models which simulate climate relatively poorly 
could yield excessively large estimates of discrepancy, thus overestimating the 
impact of structural errors. 

It is clear, therefore, that the sensitivity of our projections to plausible variations 
in discrepancy is an important test of their robustness (see Annex 2, and further 
discussion in Section 3.3). In the case of the historical component of discrepancy, 
such tests can be augmented by diagnostic checks, since the magnitude of 
biases in our model simulations can be calculated a posteriori. We used our 
emulator to estimate the location in the model parameter space which gives 
the best simulation of historical climate, and then calculated the squared error 
between emulated and observed values found in practice, for each of the 
variables used in our weighting of different model variants (see Section 3.2.9). 
For each variable, the squared error was then divided by our a priori estimate 
of its expected value, this consisting of the sum of the variances arising from 
our prior estimate of discrepancy, observational errors, and emulation errors. 
The average value of these normalised squared errors was found to be ~0.3, 
indicating that the structural component of model error may be rather smaller 
than our a priori estimates derived from other climate models without reference 
to the observations. This suggests that the potential risk that the presence of 
common systematic errors in models might lead us to underestimate historical 
discrepancy is not realized in practice, at least for the set of historical observables 
considered. Obviously we cannot perform corresponding diagnostic checks on 
the discrepancy attached to future variables, and there is no guarantee that an 
overestimate in historical discrepancy would necessarily imply a corresponding 
overestimate of future values. 

3.2.9 Use of climate variables to estimate discrepancy and weight 
projections
The calculation of weights for different locations in the HadSM3 parameter space 
(Section 3.2.7) requires us to compare emulated estimates of historical climate 
against some set of corresponding observations. In addition, the calculation of 
discrepancy (Section 3.2.8) requires us to compare emulated estimates of both 
historical climate and the response to doubled CO2 against simulated values 
from multimodel ensemble members. In this sub-section we describe the set of 
variables upon which these comparisons are based.
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Which observations are used to weight UKCP09 projections?
Our choice of potential observational constraints is restricted to historical variables 
which can be simulated by our ensemble of HadSM3 simulations, or which can 
be inferred with acceptable accuracy via the timescaling procedure of Sections 
3.2.4 and 3.2.6. This precludes, for example, the use of observations of properties 
relating to sub-surface ocean, sulphur cycle or terrestrial ecosystem processes 
(e.g. ocean salinity or temperature cross-sections, net primary productivity of the 
biosphere, etc.) or of coupled ocean–atmosphere modes of variability in which 
ocean transport plays a role, such as the El Niño–Southern Oscillation. In the main, 
therefore, we are restricted to the use of spatial fields of multiannual seasonal 
means of physical variables describing surface and atmospheric characteristics 
of recent historical climate. We are also restricted by the set of fields available 
from the multi-model ensemble used to generate our discrepancy estimates 
(Section 3.2.8). Nevertheless, this still constitutes a substantial subset of the 
metrics typically used to assess climate simulations (e.g. Taylor, 2001; Reichler 
and Kim, 2008). Specifically, we use observed latitude–longitude fields of sea 
surface temperature, land surface air temperature, precipitation, pressure at 
mean sea level, shortwave and longwave radiation at the top of the atmosphere, 
shortwave and longwave cloud radiative forcing, total cloud amount, surface 
fluxes of sensible and latent heat, and latitude-height distributions of zonally 
averaged atmospheric relative humidity. This amounts to a very large number 
of variables, given that a single spatial field consists of ~7000 grid box values. 
However there are significant spatial relationships within each field, and also 
relationships between different fields, so it is possible (and necessary, for 
computational reasons) to capture the main variations found in our ensemble 
simulations of these observables in a smaller number of independent variables, 
as described in the following sub-section.

In addition, we also include changes in large-scale features of surface temperature 
patterns observed during the twentieth century as an additional constraint. 
This is desirable because the ability to replicate historical temperature changes 
is widely recognised as an important test of the credibility of projected future 
changes, and has been used as a formal observational constraint in a number 
of studies (e.g. Allen et al. 2000; Stott et al. 2006a,b). It is feasible to do this 
in UKCP09 because our timescaling technique allows us to infer this aspect of 
time-dependent historical climate change for any given point in parameter 
space, by using our simple climate model tuned to the relevant climate sensitivity 
(Section 3.2.4). We therefore include historical changes in four indices identified 
by Braganza et al. (2003), which capture key features of the characteristic 
response to increasing greenhouse gases found in climate model simulations, 
these being the global mean, land–ocean and interhemispheric temperature 
contrasts and the zonally averaged meridional temperature gradient in Northern 
Hemisphere mid-latitudes. Stott et al. (2006a) show that these indices capture 
most of the information obtained from comprehensive spatiotemporal analyses 
of the past warming attributable to forcing from greenhouse gases, aerosols 
and natural forcing agents, and therefore provide an important constraint on 
future temperature changes at continental to global scales (e.g. Stott et al. 
2006b; Kettleborough et al. 2007). We also account for structural error in our 
estimates of the Braganza indices, by combining our emulation and timescaling 
techniques to predict the results of estimates derived from multimodel ensemble 
members, using an approach consistent with that used to calculate other aspects 
of discrepancy (see Section 3.2.8). 

Expressing observational constraints through a limited set of key variables
Our set of observables, whilst incomplete, constitutes a large collection of 
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variables covering a variety of physical climate characteristics. This should 
substantially reduce the risk of erroneously assigning a high weight to a location 
in parameter space which achieves a good fit to observations through a fortuitous 
compensation of errors. In order to make our calculations tractable, it is necessary 
to reduce the number of historical multiannual mean climate variables used in 
the calculation of relative likelihoods for different parts of parameter space. This 
is done through an eigenvector analysis, identifying a limited set of orthogonal 
multivariate patterns which explain the main variations in behaviour found 
within our ensemble of HadSM3 simulations. Fields of values for each climate 
variable are expressed in dimensionless units prior to the eigenvector analysis, 
by normalizing values at each location by the globally averaged value of the 
standard deviation of the relevant variable across the HadSM3 ensemble. The 
choice of cutoff for the number of retained eigenvectors is determined by a 
balance between: (i) the need to include a wide range of historical information 
in order to identify physically and statistically significant variations in the fit to 
observations found in different parts of parameter space; and (ii) the need to 
ensure that a reasonable proportion of points in parameter space receive a non-
negligible weight, so that robust projections can be obtained by sampling a large 
but finite sample of points. Statistical tests indicate that six eigenvectors is the 
appropriate choice (see also Annex 2). The retained eigenvectors explain 66% of 
the variance found within the HadSM3 ensemble. The projections of emulated 
multiyear mean climate onto these six eigenvectors, plus the four Braganza et 
al. indices of large scale historical surface temperature trends, form the set of 
observables from which the weights are calculated. 

Observational uncertainties
The specification of uncertainties associated with the verifying historical 
observations is in principle an important consideration. For the indices of 
historical surface temperature changes, the estimates are derived from the 
error estimates supplied by Brohan et al. (2006) for the HadCRUT3 dataset. The 
available observational climatologies for the multiyear mean variables do not 
possess comprehensive error estimates, so we take the simpler approach of using 
two alternative verifying datasets for each variable, and randomly generating 
plausible alternative observed values by interpolating between the two datasets. 
Improving the specification of observational uncertainties is an issue for future 
research.

Which climate variables are used to find perturbed physics analogues to 
multimodel ensemble members?
As explained in Section 3.2.8, we estimate discrepancy by finding locations in the 
HadSM3 parameter space which produce emulated estimates of climate which 
best fit results from the simulations of an ensemble of alternative models. The fit 
is calculated by combining information from simulations of both historical climate 
and future climate change. The historical information is based on projections 
onto the six eigenvectors of spatial patterns of time-averaged climate described 
above. The future climate change information is provided from six multivariate 
eigenvectors of the simulated response to doubled CO2. These are obtained from 
an eigenvector analysis of patterns of change in the ensemble of perturbed 
physics simulations, based on the same set of variables used to determine 
eigenvectors of historical climate (see above). The simulated climate changes of 
multimodel ensemble members are then projected onto these eigenvectors, as 
are emulated changes from different points in the HadSM3 parameter space, 
allowing us to add six coefficients of future climate change to the six historical 
variables used to determine the best perturbed physics analogues to any given 
multimodel ensemble member.
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Although we use only twelve derived variables in this matching process, these 
encapsulate information from global patterns of historical climate and future 
change of a range of basic climate variables. This ensures that it would only 
be possible to find a good overall match (over different variables and regions) 
if HadSM3 analogues can be found which closely replicate all aspects of the 
representations of physical processes found in any given multimodel ensemble 
member. Any outstanding mismatch (beyond the effects of internal climate 
variability) should then arise from the true effects of structural differences 
between HadSM3 and the multimodel ensemble member, and can be taken as 
an estimate of discrepancy. 

3.2.10 Probabilistic projections of the equilibrium response to doubled 
carbon dioxide
As explained in Sections 3.2.7–3.2.9, probabilistic projections of equilibrium 
climate changes in response to doubled CO2 provide the cornerstone of the 
UKCP09 methodology. This process produces projections of changes in the 
UKCP09 variables at five global climate model (HadSM3) grid boxes covering 
the UK landmass (and also a further nine points covering surrounding marine 
regions), for every month of the year. Here we provide a few illustrations of how 
this part of the method works in practice, and what criteria are considered in 
assessing the credibility of the results.

Figure 3.4 shows an example, for changes in the 20-yr average of surface air 
temperature (Tmean) over Wales, in March. The green histogram shows our 
perturbed physics ensemble of 280 HadSM3 simulations, while the multi-model 
ensemble (MME) results are shown as black ticks along the x-axis. The MME results 
provide a means of estimating the impact of structural errors in HadSM3, via the 
discrepancy term described in Section 3.2.8. We estimate discrepancy by taking 
each MME member in turn, and use a search algorithm to find four locations 
within the HadSM3 parameter space which match the results of the MME 
member most closely, based on multivariate global patterns of both historical 
climate and changes in response to doubled CO2 (see Section 3.2.9). Once the 
four HadSM3 analogues have been found, discrepancy values can be calculated 
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Figure 3.4: Changes in 20 yr-mean surface 
air temperature (Tmean, °C) over the 
HadSM3 grid box corresponding to Wales, 
in March, in response to doubled CO2. 
Green histogram shows 280 perturbed 
physics simulations of HadSM3. Black ticks 
show corresponding changes simulated 
by 12 multi-model ensemble members. 
Red curve shows the distribution 
obtained by emulating responses across 
the full parameter space of surface and 
atmospheric processes in HadSM3. The red 
curve also includes the broadening effect 
of adding the variance (but not the mean) 
of discrepancy. The blue curve shows 
the effects of weighting the emulated 
responses according to observational 
constraints (see Section 3.2.9). The black 
curve shows the posterior distribution, 
which includes the shift arising from 
adding in the mean effect of discrepancy.
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for any variable of interest (e.g. temperature change over Wales in March). This 
is done by applying our emulator to estimate projected changes from the four 
HadSM3 variants, and comparing those with the simulated projection of the 
corresponding variable from the target MME member. Repeating this procedure 
for each of the 12 MME members gives 48 discrepancy estimates in total, from 
which a mean and variance can be calculated (we assume the discrepancy 
distribution to be Gaussian). 

The coloured curves in Figure 3.4 show how we build up our probabilistic 
projection from the model simulations. We use our emulator trained on the 
perturbed physics ensemble results (see Section 3.2.3) to estimate results for 
a much larger ensemble of model variants sampling the full parameter space 
of HadSM3. This gives us the red curve, which also contains the impact of the 
variance of discrepancy (but not the mean value of discrepancy, as we wish to 
illustrate the impact of this separately). In Figure 3.4 the sampling of the full 
parameter space, combined with the addition of discrepancy variance, leads to 
a slight broadening of the distribution of possible changes (red curve cf. green 
histogram). The median value is also shifted slightly towards a smaller warming, 
this being an effect of the improved sampling of parameter space inherent in 
the red curve. We also weight points in parameter space according to emulated 
estimates of the set of historical climate variables described in Section 3.2.9. 
This weighting process constrains the emulated projections according to the fit 
to observations, and will in general alter the characteristics of the probability 
distribution of projected changes. In Figure 3.4 the probabilities of small or 
large temperature increases are reduced by the weighting (blue curve cf. red 
curve), while the probabilities of intermediate changes increase somewhat. 
The mean discrepancy is then added to the projected changes at each location 
in the HadSM3 parameter space, to produce the final (posterior) probabilistic 
projection (black curve cf. blue curve). 

We cannot make a blanket assumption that this procedure will lead to the 
production of a credible result. For example, a basic assumption of our approach 
is that robust probabilities would be difficult to infer from small multi-model 
ensembles in isolation (see Section 3.1), and that perturbed physics ensembles 

Figure 3.5: As Figure 3.4, for changes 
in surface latent heat flux (Wm–2) over 
the HadSM3 grid box corresponding to 
Scotland, for September–November.
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are therefore needed to supply a more systematic means of sampling key process 
uncertainties to first order. If this is the case, then we would expect the spread 
of changes simulated by the perturbed physics ensemble to encompass that 
described by the multi-model ensemble, as it does in Figure 3.4. 

We checked all the UKCP09 variables according to this criterion, and generally 
found that the spread of MME responses did lie within that of the HadSM3 
ensemble. For surface latent heat flux, however, two MME members were often 
found to give projections at or beyond an extreme of the range given by our 
HadSM3 ensemble (Figure 3.5 shows a typical example). This signals that for latent 
heat flux the simulated changes are strongly dependent on detailed choices 
made in the physics of different climate models, and cannot be assumed to be 
approximately independent of how our experimental design was constructed 
(for example our decision to base the perturbed physics ensemble on HadCM3/
HadSM3, rather than on some other climate model). In Figure 3.5 the outlying 
MME responses lead to a large discprepancy variance, which substantially inflates 
the spread in the red, blue and black curves, leading in particular to the projection 
of a significant probability for negative change in latent heat flux. This is not 
supported by any of the underlying model simulations. We therefore conclude 
that the method cannot be used to provide robust probabilistic projections for 
latent heat flux. 

Another issue concerns the magnitude of the shift in the final projections resulting 
from the mean of the discrepancy term (black cf. blue curve in Figure 3.4). If the 
perturbed physics ensemble is an effective means of sampling key uncertainties 
to first order, we would expect the mean value of discrepancy to exert a limited 
(albeit non-trivial) influence on the final results. This is indeed the case in Figure 
3.4. Here, it is important to understand that the mean discrepancy can in theory 
be large, even when the multi-model and perturbed physics ensemble results 
cover similar ranges. This is because the procedure used to match MME members 
to their nearest perturbed physics ensemble analogues is conducted using 
information based on a wide range of historical and future climate information 
derived from global multivariate patterns. This is done to ensure that it will 
only be possible to find a perfect match (across all variables and regions) if the 
perturbed physics analogues truly replicate all aspects of the representations 
of physical processes simulated in their target MME members. Any remaining 
disparities (for some particular local variable like temperature change over Wales 
in March) will then be a consequence of true structural differences between 
HadSM3 and the MME members. Note that if we had attempted to calculate the 
discrepancy by conducting the matching exercise using a more limited choice 
of variables (say using only temperature changes over the UK), we would have 
risked finding misleadingly good matches over the chosen variables (through 
a convenient local compensation of errors effectively achieved via statistical 
overfitting), accompanied by unrealistically poor matches over other variables or 
regions not included in the matching process. 

Figure 3.6 shows a histogram of the shifts in Tmean arising from the mean of the 
discrepancy, considering the 60 Tmean projections obtained by pooling monthly 
changes at all five UK land points in HadSM3. In most cases the mean discrepancy 
is within the range plus or minus 0.5ºC (as in Figure 3.4), and therefore provides 
a significant but not dominant contribution to the final projection, compared 
to the spread of responses simulated by the HadSM3 ensemble, or emulated 
across the full HadSM3 parameter space. In such cases, we typically find that the 
median of the posterior distribution lies somewhere between the medians of the 
HadSM3 and MME ensembles.
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Occasionally, however, larger shifts are found. Figure 3.7 shows the biggest 
shift (between the posterior probabilistic projection and the underlying climate 
model simulations) found in our Tmean projections, over Scotland in March. In 
this particular case the median of the posterior distribution ends up towards 
the lower end of the distributions of both the HadSM3 and MME simulations, 
because all the effects described above (sampling the full parameter space, 
weighting, and discrepancy) conspire to shift it in the same direction. The largest 
component in the total shift comes from discrepancy. Detailed investigation 
reveals that this occurs because the HadSM3 ensemble members have a larger 
local snow albedo feedback in their response to doubled CO2, compared to the 
MME members. This is due to a cold bias in their present day simulations over 
Scotland, which means that there is too much snow to melt when CO2 is doubled 
in their climate change simulations. The discrepancy calculation captures the 
resulting bias in their simulated changes, reducing the estimated warming to 
account for the excessive contribution from reduced snow cover in HadSM3. If 
this was the only contribution to the total shift, then the median of the posterior 
distribution (black curve) would in this case lie close to the median of the MME 
results. However the effects of sampling the full HadSM3 parameter space (red 
curve cf. green histogram in Figure 3.7), and of weighting the projections with 
observations (blue curve cf. red curve), both add to the total shift, explaining 
why the posterior distribution shows a median warming smaller than that of 
either the HadSM3 or MME ensembles. The posterior distribution thus suggests 
a probability of about 15% for a warming smaller than those simulated by any 
of the climate model runs. We believe that the shifts arising from sampling 
parameter space and weighting are both credible, because these aspects of the 
method improve the sampling of uncertainties and give more emphasis to the 
better HadSM3 model variants. We also believe the direction of the shift arising 
from discrepancy is physically credible (see above). Despite this, the magnitude 
of the shift in this particular case is a cause for concern, as it must be regarded as 
uncertain (as explained in Section 3.2.8), and yet exerts a substantial influence on 
the final result. If Figure 3.7 was a typical example of the impact of discrepancy, it 
would be difficult to justify the production of probabilistic projections of Tmean. 
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Figure 3.6: Histogram of values for the 
mean discrepancy for 20 yr mean changes 
in monthly surface air temperature (°C) 
in response to doubled CO2, at UK grid 
points in HadSM3 (5 grid points x 12 
months gives 60 values in all, distributed 
in bins of width 0.1°C).
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However Figure 3.7 is actually an extreme example (see above discussion of Figure 
3.6), so overall we judge the impact of discrepancy to be sufficiently modest to 
justify the production of probabilistic projections for Tmean.

We checked the impact of the shift due to the mean discrepancy in all UKCP09 
variables. While isolated examples of significant shifts could be found for some 
variables (as in Figure 3.7 for Tmean), the typical impacts of such shifts were 
judged sufficiently modest to imply that the methodology could be considered 
a reasonable basis for the production of probabilistic projections. However, we 
note that surface latent heat flux was excluded (due to the mismatch between 
the MME and HadSM3 ensemble results discussed above). Also, it was not possible 
to produce probabilistic projections of snowfall or soil moisture content for other 
reasons, discussed in Section 3.3.

3.2.11 Downscaling for UKCP09
Regional climate model simulations
In order to provide climate projections at the fine spatial scales required for 
UKCP09 (see Figure 1.2(a), a downscaling method is required to derive such 
information from our global climate model simulations, run using a horizontal 
resolution of ~300 km. This was achieved by running simulations of a high 
resolution limited area regional climate model (RCM), configured from HadCM3 
and run at 25 km horizontal resolution. A perturbed physics ensemble of 17 
RCM variants was produced, eleven of which were eventually used in UKCP09 
(as explained below). These simulations sampled uncertainties in the effects 
of varying regional physical processes on the simulation of fine scale detail. 
The simulations capture detailed regional effects of mountains, coastlines and 
variations in land surface properties, although they do not allow for variations of 
land surface types within a model grid box, in contrast to a more recent version 
(Essery et al. 2003) being used in additional work to provide a more sophisticated 
assessment of Urban Heat Island effects (see Annex 7).

Each ensemble member was driven from 1950 to 2100 by time series of lateral 
boundary conditions (atmospheric surface pressure, wind, temperature and 
moisture plus chemical species required for the calculation of sulphate aerosol 
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Figure 3.7: As Figure 3.4, for changes 
in Tmean over the HadSM3 grid box 
corresponding to Scotland, in March.
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* The RCM simulations in UKCP09 are a significant development from those done for 
UKCIP02 in terms of resolution (25 km cf. 50 km), ensemble design (eleven simulations 
sampling modelling uncertainties cf. three simulations sampling only initial state 
uncertainties), and length of simulation (covering 1951–2100 continuously, cf. two time 
slices of 1961–1990 and 2071–2100). These developments allow us to sample a spread 
of possible realisations of fine scale detail throughout the 21st century in UKCP09, thus 
avoiding the assumption in UKCIP02 that a single master pattern for the 2080s can be 
scaled back in time to earlier periods. 

concentrations) and surface boundary conditions (sea surface temperatures and 
sea ice extents) saved from a member of the PPE_A1B ensemble of HadCM3 
simulations (Section 3.2.4).* Parameter settings in each RCM ensemble member 
were chosen to be consistent with the settings used in the relevant HadCM3 
simulation. For most parameters this was achieved simply by using the same 
values in both simulations, however in a few cases the parameters were adjusted 
to allow for known dependencies on horizontal resolution. 

The RCM simulations used the domain shown in Figure 3.8, chosen so as to 
be large enough to avoid the risk that relaxation to GCM data at the lateral 
boundaries will damp the simulation of fine scale detail over interior regions 
of interest (e.g. Jones et al. 1995), yet small enough to minimise the risk that 
inconsistencies could develop between the simulations of large scale climate 
features in the driving GCM and nested RCM integrations (e.g. Jacob et al. 2007). 

In eleven ensemble members this experimental design succeeded in producing 
simulations of detailed climate variability and change over the UK which 
were physically plausible, and consistent with the driving GCM simulations of 

0 500 1000 1500 2000
metres

Figure 3.8: Domain used for the UKCP09 
regional climate model simulations, 
excluding the exterior rim within which 
the model is relaxed to the boundary 
data supplied from the driving global 
model simulations. Orographic heights (in 
metres) are also shown.
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synoptic scale features (see Annex 3). In six ensemble members, however, the 
RCM simulations were found to be deficient in their simulations of storms and 
precipitation, exhibiting too little variability and too many dry days, especially in 
summer. This was traced to the impact of one of the parameter perturbations, 
involving a reduction in the order of the diffusive damping applied when 
calculating dynamical transport of heat, momentum and moisture. The GCM 
uses sixth order diffusion in its standard variant, whereas the RCM uses fourth 
order damping as standard (due to its finer grid). Some of our perturbed GCM 
simulations used fourth order diffusion (thus sampling the effect of increasing 
the spatial scale of the applied damping), leading to modest reductions in 
storminess and precipitation variability. An attempt was made to implement an 
equivalent perturbation in the relevant RCM simulations, moving from fourth to 
second order diffusion with accompanying changes to the diffusion coefficient to 
achieve a corresponding change in damping characteristics based on theoretical 
calculations. However, in practice the changes had a much larger impact than 
anticipated in the RCM simulations, rendering their time series of winds and 
precipitation inconsistent with those of the driving GCM runs. These six ensemble 
members were therefore not used in the calibration of our downscaling 
procedure, summarised in the following paragraph. 

Downscaling to UKCP09 target regions 
The downscaling was implemented by developing regression relationships 
between changes simulated by the RCM over regions for which projections are 
required by UKCP09 (individual 25 km grid boxes and a set of administrative and 
river-based regions over land (Figure 1.2), plus a set of marine regions (Figure 
1.4)), and changes simulated at nearby grid points in the GCM. This task bears 
some similarities to a traditional statistical downscaling approach, in which a set 
of large-scale predictor variables is used to obtain values of localized predictand 
variables, using relationships trained on historical observations (e.g. Wilby et al. 
2004). Such methods assume that historical relationships persist into the future, 
however such an assumption is avoided in our case, as the relationships are 
trained using future changes in the predictor and predictand variables simulated 
by the GCM and RCM, since their purpose is to allow us to infer fine-scale changes 
for parts of the model parameter space for which no RCM simulation is available. 

We expressed the simulated change in a given RCM variable at a given grid 
point as a univariate linear regression (with slope but no intercept) against 
the change in the same variable simulated in the GCM at a single nearby grid 
point. Values for five non-overlapping 30-yr periods (1950–1979, 1980–2009, 
2010–2039, 2040–2069, 2070–2099) were expressed as changes relative to the 
UKCP09 baseline period of 1961–1990, and changes for all five periods and all 
eleven ensemble members were pooled into a single dataset for the calculation 
of the regression coefficient (and its associated uncertainty), and the residual 
unexplained variance. The residual is assumed to be normally distributed with 
zero mean. Figure 3.9 shows an example, in which the red lines represent the 
regression relationship, with residual obtained from the scatter of the black 
crosses about the red lines, which arises from a combination of uncertainty in the 
relationship between changes in the global and regional models, and also from 
locally generated internal variability in the RCM runs. This simple approach was 
used in order to minimise the risk of obtaining unrealistic relationships through 
overfitting. For non-coastal RCM locations over the mainland UK, the GCM point 
used in the regression was selected from UK land boxes in HadCM3, selecting the 
nearest point to the target RCM location unless an adjacent HadCM3 box could 
be found which explained a significantly greater portion of the variance found 
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* Some of the UKCP09 statistical calculations were performed using a transformed variable 
(here the natural logarithm of precipitation), which is subsequently converted back into 
the variable provided to users (here percentage changes in precipitation). This is done for 
reasons explained in Section 3.2.3.

in the RCM response. For marine regions, a similar approach was taken, using 
predictors chosen from marine HadCM3 boxes nearest or adjacent to the target 
region. When considering coastal RCM mainland points, or points representing 
small islands (Channel Islands, Hebrides, Orkney, Shetland, etc.), the predictor 
variables were selected from surrounding GCM land and sea points, to account 
for the possibility of a dominant maritime influence on climate at these locations.

Figure 3.9 shows close relationships between the global and regional model 
changes in winter. Figure 3.10 gives further examples, showing that strong 
relationships can also be found for summer changes, even for extreme variables 
subject to considerable internal variability, such as the 99th percentile of 
daily maximum temperature, Nevertheless, the strengths of the downscaling 
relationships do depend on which variable, season and region is being considered. 

−0.1 0.0 0.1 0.2 0.3
Change in log of GCM precipitation 

0

1

2

−0.2

−0.1

0.

0.

0.

0.3

C
h

an
g

e 
in

 lo
g

 o
f 

R
C

M
 p

re
ci

p
it

at
io

n

−2 0 2 4 6
Change in GCM temperature (ºC)

−1

0

1

2

3

4

5

C
h

an
g

e 
in

 R
C

M
 t

em
p

er
at

u
re

 (
ºC

)

Figure 3.9: Plots of changes in winter 
surface temperature (ºC, top) and in 
the natural logarithm of precipitation* 
(bottom), for the North Scotland 
administrative region, for five non-
overlapping 30-yr periods relative to 
1961–1990, simulated by 11 members 
of our regional climate model ensemble 
(RCM), compared with corresponding 
changes simulated by driving global 
climate model simulations (GCM) at 
a nearby grid point found to be most 
strongly related to the regional model 
changes (see text). The red lines show the 
linear regression relationships between 
the RCM and GCM changes derived from 
the data, and used in the downscaling 
procedure adopted for UKCP09. A zero 
intercept is imposed on the regression 
relationships, constraining the red 
line to pass through the origin and 
hence preventing the relationship from 
indicating a non-zero forced response in 
the RCM when there is no forced response 
in the GCM. 
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Figure 3.11 plots the regression coefficients for changes in winter precipitation at 
25 km grid squares around the UK. Significant regional variations are apparent: 
For example the coefficients exceed unity at many coastal locations, indicating 
enhanced responses in the RCMs compared with the corresponding GCM 
simulations, while smaller coefficients are found over parts of Wales, northern 
England and northern Scotland. Note that the occurrence of small regression 
coefficients does not necessarily indicate a failure of the downscaling method. For 
example, this can occur simply because: (i) the RCMs give systematically smaller 
changes than are found in the GCM simulations, perhaps due to the influence 
of regional surface topography in modifying changes found at larger scales; 
or (ii) because the responses in the RCM are dominated by locally generated 
internal variability. The region of small coefficients over central parts of northern 
Scotland, for example, occurs because the ratio of internal variability to forced 
changes is larger than in the driving GCM simulations. However, in some cases 
our reliance on a simple regression technique using only a single GCM predictor 
may limit the extent to which the relationship between forced changes in the 
RCM and GCM simulations is captured in the downscaling procedure.
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Figure 3.10: As Figure 3.9 for changes in 
the 99th percentile of daily maximum 
temperature (°C, top), and in the natural 
logarithm of precipitation (bottom), for 
South East England in summer.
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Figure 3.11 (below): Plots of regression 
coefficients between changes in the 
natural logarithm of winter precipitation 
in regional and global climate model 
projections, for UKCP09 25 km grid 
squares.
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Assumptions and limitations
Probabilistic projections for UKCP09 target regions were obtained by applying the 
calibrated downscaling relationships to probabilistic projections of 21st century 
climate change for the above-mentioned GCM grid boxes covering the UK and 
surrounding sea points, and hence obtaining estimates for the regions of Figure. 
1.2 (see Section 3.2.12 for more details). In doing so, a number of limitations 
of our approach should be recognised. Firstly, we assume that the downscaling 
relationship (for a given target region and climate variable) is independent of the 
climate model parameter settings, and of the future period of interest. Secondly, 
we do not account for variations across parameter space in the skill in simulations 
of historical fine scale climate features found in our RCM simulations, hence the 
observational constraints applied to weight different parameter combinations 
in our Bayesian calculation (see Sections 3.2.7 and 3.2.9) are based purely on 
aspects of global model performance. Thirdly, we do not account for potential 
structural errors in our downscaling procedure, arising, for example, from our 
exclusive reliance on RCM variants configured from HadCM3, or (as noted above) 
from our neglect of more complex regression techniques based on multivariate 
GCM predictor variables. All of these limitations arise from the small size of our 
ensemble of RCM simulations: In particular, we do not possess enough simulations 
to emulate potential variations in fine scale characteristics of historical or future 
climate across parameter space. Further research in multivariate downscaling 
techniques and improvements in computing capacity may allow refined estimates 
of downscaling uncertainty to be produced in future.

3.2.12 Production of probabilistic projection data for UKCP09
Here we summarise the computational procedure used to generate probabilistic 
projections for UKCP09 for the SRES A1B scenario, from the elements described 
in the preceding sub-sections. Figure 3.12 gives a schematic overview of the main 
elements of the procedure, described in more detail below.

Generation of probabilistic predictions

Emulator

Integrate over parameter space 
to obtain probabilistic predictions

Observational constraints

Uncertainty due to structural
model error (discrepancy)

Uncertainty from ocean, sulphur
cycle, terrestrial ecosystem processes

Sample present day and 2 x CO2
climate across atmosphere 
model parameter space

Timescaled estimates of regional
climate for 1860–2100

Interim weights for points in
parameter space

Final weights for points in 
parameter space

Add downscaling uncertainty

Figure 3.12: Schematic summary of the 
main elements involved in the derivation 
of probabilistic projections of climate 
change for UKCP09, obtained by applying 
the Bayesian framework of Sections 
3.2.7–3.2.9 and the timescaling procedure 
of Sections 3.2.4 and 3.2.6 to the results of 
our climate model ensemble simulations. 
An interim weight, which quantifies the 
relative likelihood of different model 
variants based on time-averaged recent 
climate (see paragraph (i) below), is 
used to achieve efficient sampling of the 
atmosphere model parameter space in the 
timescaling of time-dependent climate 
changes. Following this final weights 
are calculated (paragraph (iii)), which 
account for observations of both recent 
time-averaged climate, and historical 
temperature trends.




