Appendices

A Site assessment table

JBA consulting This page is intentionally blank.

	WwTW additional flow
V V	ent flood risk Fluvial Flood Risk Pluvial Flood Risk
	G G G G G G G A A
	G G A A G A G G G G G G G G G G G G G G
	G G G G G G A
	G G G G G G G G G G G G G G G G G G G
	G G G A G G A G G A
	G G G G G G A
	G A A
	G G G G G
No. No. <td>G G A</td>	G G A
I I	
I I	
No. No. <td></td>	
I I	G G G G G
I I	G G G G G G G G G G G G G G G G G G G
I I	
No. No. <td></td>	
N N	
N N	
N = 1 N = 1 <th< td=""><td>G</td></th<>	G
N N	G R G G G G G G G G G
	G G G
Normal Normal Normal Normal <td></td>	
1 1	
Normal with state	
Note Note<	
N N	
P1 P1 P1 P1 P1 <	
1 1	
P1 P104/F4 Park region P1 Park region P2	
Indicat Stocklam Farm	
P23 P12/V2582/FUL Planning permission grade and fully worth Rd 36 36 0 36.0 86 27 Thames Water 0.012 SWOX	
Land between Station Rd & P24 P12/V0324 P12/V	
P25 P12/V1329/FUL	
P27 P12/V0270/EX	
P2V 13800 Paining permission or and Source Add 20 Paining permission or and Source Add 20	
P30 P1/V0741/O Planing permission gr Ln, Botleg SMOX	
P32P02/V1594/OPlaning permission graW setem ParkII <td></td>	
P34P12/V2283/0Planing permission gr: Sland filme RA, StepIII	
P3 P1/V038 Planing permission or 17 to 20 Millbrook Sq 0 0 0 0	
Anson reled, Montrade, Part Anson reled, Montrade, Part <td></td>	
P42 P12/V2429/O Resolution to grant Land off Rectory Farm Cl 13 0 13 13 10 13 10 13 10 13 10 13 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	
P43 P12/V0299/C Application under combrend SWOX Complexity Com	
A bit A	
P4 P13/V04/P/O Pesolution og rand a fullion (lillion multion rand a fullion (lillion rand a fullion multion rand a fullion rand a fullion multion rand a fullion rand a fullio	
P49 P13/V381/FUL Paning permission or Madow, East Hanney model mo	
P52 P13/V0575/0 Resolution to grant American American <td></td>	
P13/V048/V P13/VV	
F3 / V1330 Factor F	
P12/V1878/FUL P12/V1878/FUL Paning permission grace perping regarding Red P12/V1878/FUL P12/V18	
P59 P13/V0339/0 Resolution to grand Land of Colton Road G G G G	
P1 P3 <th< td=""><td></td></th<>	
na Assumptions based on Windfall N/A 6 65	

This page is intentionally blank.

B Water Quality Assessment

This page is intentionally blank.

B Water quality assessment

B.1 Introduction

The increased discharge of effluent due to an increase in the population served by a Sewage Treatment Works (STW) may impact on the quality of the receiving water. The Water Framework Directive (WFD) does not allow a watercourse to deteriorate from its current class (either water body or element class).

It is Environment Agency (EA) policy to model the impact of increasing effluent volumes on the receiving watercourse. Where the scale of development is such that a deterioration is predicted, a new environmental permit may be required for the STW to improve the quality of the final effluent, so that the extra pollution load will not result in a deterioration in the water quality of the watercourse. This is known as a "no deterioration" or "load standstill".

EA guidance states that a 10% deterioration in the receiving water can be allowed in some circumstances as long as this does not cause a class deterioration to occur.

If a watercourse fails the 'good status' target, further investigations are needed in order to define the 'reasons for fail' and which actions could be implemented to reach such status.

During the preparation of the phase I Water Cycle Study (WCS) the EA advised that it would be necessary to undertake an assessment of the water quality impact of development in the 11 STW catchments which will receive the majority of additional flows in the Vale of White Horse District (12 outfalls as Abingdon has 2 outfalls to different watercourses).

This report assesses the potential water quality impacts due to growth in STW effluent flows and loads at those 11 STW discharge points.

B.2 Standards

The WFD targets for Biological Oxygen Demand (BOD), Ammonia (NH₄) and Phosphate (P) set by the EA are shown in Table 1 and Table 2 below:

Determinand	Statistic	1st cycle (2009)	2nd cycle (2013)			
BOD	90 percentile	5mg/l	5mg/l			
NH4	90 percentile	0.6mg/l	0.6mg/l			
Р	Mean	0.12 mg/l	See Table 2 below for reach-specific targets			

Table 1: WFD targets

For cycle 2 (2013 onwards) the EA has set reach-specific targets for P based on environmental modelling using SIMCAT. The EA has advised that for unlisted sites a target of 0.08 mg/l as an annual average orthophosphate (PO4-P) should be used.

SIMCAT model node	Site Name	2nd cycle standard (mg/l)
POCR0006	LETCOMBE BROOK AT WEIR FARM, EAST HANNEY	0.08
POCR0071	PORTOBELLO DITCH BELOW RAILWAY	0.083
POCR0019	OCK AT STANFORD IN THE VALE ROAD BRIDGE, STANFORD IN THE VALE	0.081
POCR0011	MARCHAM BROOK AT MILL ROAD, MARCHAM	0.084
POCR0013	OCK ABOVE THAMES	0.086
POCR0016	OCK AT MILL ROAD, MARCHAM	0.085
POCR0017	OCK AT OCK BRIDGE, LYFORD	0.083
PTHR0065	THAMES 400M BELOW BOVENEY DITCH	0.09
PTHR0075	THAMES ABOVE NSWC INTAKE, EGHAM	0.092
PTHR0079	THAMES AT BOVENEY WEIR	0.09
PTHR0108	THAMES AT THREE VALLEYS WATER INTAKE, SUNNYMEADS	0.092
PTHR0074	THAMES ABOVE NSWC INTAKE, WALTON	0.09
PTHR0076	THAMES AT RAVENS AIT, SURBITON	0.088
PTHR0094	THAMES AT MWD INTAKE, WALTON	0.09
PTHR0096	THAMES AT NSWC INTAKE, CHERTSEY	0.092
PTHR0107	THAMES AT TEDDINGTON WEIR	0.09
PTHR0082	THAMES AT COOKHAM BRIDGE	0.089
PTHR0088	THAMES AT HENLEY BRIDGE	0.087
PTHR0102	THAMES AT SONNING WEIR	0.087
PTHR0104	THAMES AT SPADE OAK	0.089
PTHR0204	FAWLEY COURT STREAM AT GARDEN CENTRE ROAD BRIDGE, HENLEY	0.091
PTHR0054	PORTLANE BROOK ABOVE THAMES	0.088
PTHR0265	LONGFORD RIVER AT HIGH STREET, HAMPTON	0.093
PTHR0014	CHALVEY DITCH ABOVE THAMES	0.087
PTHR0005	ASH ABOVE THAMES	0.094
PTHR0124	CUT ABOVE THAMES	0.089
PTHR0125	CUT AT BUCK BRIDGE, BINFIELD	0.077
PTHR0223	HEYWOOD STREAM ABOVE THE CUT	0.093
PTHR0008	BOVENEY DITCH ABOVE THAMES	0.095

Table 2: Targets for Mean Phosphate, 2013

SIMCAT model node	Site Name	2nd cycle standard (mg/l)
PTHR0016	CHOLSEY BROOK 500M BELOW CHOLSEY STW	0.087
PTHR0041	MOOR DITCH ABOVE DIDCOT STW	0.084
PTHR0043	MOOR DITCH AT B4016, APPLEFORD	0.086
PTHR0029	GINGE BROOK AT B4016, SUTTON COURTENAY	0.086
PTHR0048	NORTHFIELD BROOK AT SANDFORD	0.08
PTHR0026	FILCHAMPSTEAD BROOK ABOVE THAMES	0.079
PTHR0216	HARCOURT BROOK ABOVE LIMB BROOK	0.083
PTHR0080	THAMES AT CAVERSHAM WEIR	0.086
PTHR0111	THAMES AT WALLINGFORD BRIDGE	0.084
PTHR0120	THAMES JUST ABOVE GORING WEIR	0.084
PTHR0121	THAMES ABOVE MAPLEDURHAM WEIR	None
PTHR0113	THAMES AT WATER INTAKE, FARMOOR	0.079
PTHR0077	THAMES AT ABINGDON WEIR	0.08
PTHR0081	THAMES AT CLIFTON HAMPDEN BRIDGE	0.081
PTHR0083	THAMES AT DAYS LOCK	0.083
PTHR0085	THAMES AT FOLLY BRIDGE, OXFORD	0.08
PTHR0098	THAMES AT RADLEY COLLEGE BOATHOUSE, RADLEY	0.082
PTHR0099	THAMES AT SANDFORD	0.081
PTHR0105	THAMES AT SUTTON BRIDGE, CULHAM	0.083
PTHR0110	THAMES AT TROUT INN, GODSTOW	0.08
PTHR0152	ODHAY HILL DITCH ABOVE GINGE BROOK	0.085
PTHR0186	THAMES AT DONNINGTON BRIDGE, OXFORD	0.08
PTHR0221	CLIFTON HAMPDEN DITCH ABOVE THAMES	0.081
PUTR0249	LENTA BROOK AT HINTON MARSH FARM	0.074
PUTR0116	TUCKMILL BROOK BELOW SHRIVENHAM STW	0.075
PUTR0024	COLE AT B4000, SEVENHAMPTON	0.073
PUTR0108	THAMES AT WATERHAY BRIDGE, ASHTON KEYNES	0.071
PUTR0002	AMPNEY BROOK AT SHEEPPEN BRIDGE	0.077
PUTR0090	THAMES AT CASTLE EATON	0.075
PUTR0091	THAMES AT CRICKLADE	0.073
PUTR0093	THAMES AT EYSEY	0.074

Appendix B - Water quality assessment - FINAL

On this basis the following P targets have been used at the STW discharge points assessed:

JBA consulting

Table 3: Phosphate targets by STW

STW	Value	SIMCAT Model Node
ABINGDON (New outfall)	0.085	PTHR0152
ABINGDON (Lagoon)	0.08	PTHR0077
APPLETON	0.084	POCR0011
DIDCOT	0.086	PTHR0041
DRAYTON	0.086	PTHR0314
FARINGDON	0.08	None – default target used
KINGSTON BAGPUIZE	0.08	None – default target used
OXFORD	0.08 None – default target us	
SHRIVENHAM	0.075	PUTR0117
STANFORD IN THE VALE	0.081	POCR0019
WANTAGE	0.08	POCR0008

B.3 Methodology

The contaminants assessed were Biochemical Oxygen Demand (BOD), Ammonia (NH₄) and Phosphate (P).

The selected approach was to use the EA River Quality Planning (RQP) tool in conjunction with their recommended guidance documents: "Water Quality Planning: no deterioration and the Water Framework Directive" and "Horizontal guidance"¹. This uses a steady state Monte Carlo Mass Balance approach where flows and water quality are sampled from modelled distributions based on data where available.

The data required to run the RQP software were:

Upstream river data:

- Mean flow
- 95% exceedance flow
- Mean for each contaminants
- Standard deviation for each contaminant

Discharge data:

- Mean flow
- Standard deviation for the flow
- Mean for each contaminants
- Standard deviation for each contaminant
- River quality target data:
 - No deterioration target
 - 'Good status' target

The above data inputs should be based on observations where available. In the absence of observed data EA guidance requires that:

¹ https://www.gov.uk/government/publications/h1-environmental-risk-assessment-for-permits-overview

- If the observed STW discharge flow and quality data are not available the following values may be used:
 - Flow mean: 1.25*DWF
 - o Flow SD: 1/3*mean
 - o Quality data: environmental permit values
- If observed river flows were not available this were obtained from an existing model or a low-flows estimation software.
- If observed water quality data were not available these were obtained from an existing model or a neighbouring catchment with similar characteristics.
- Where a treatment works was predicted to lead to either a WFD class deterioration, or a deterioration of greater than 10%, it was necessary to determine a possible future environmental permit value which would prevent either class deterioration or would return the works to a "no deterioration or "load standstill" situation, as follows:
 - For a class deterioration situation, the RQP tool can be set to "calculate required discharge quality" to calculate an environmental permit value that would retain the water body at its current class.
 - For a "no-deterioration" situation, the future scenario presenting the worst case deterioration was used for each determinand. The discharge data Mean Quality and Standard Deviation were iteratively reduced until the present day 90thpercentile value was achieved. The standard deviation was assumed to be 1/3 of the mean.

B.4 Study objectives

RQP models were required to be set up and run using the present-day and 2019/20 and 2030/31 growth scenario effluent flows to assess the impact of the increased contaminant loads on the receiving watercourses due to the extra wastewater flows. These results were required to confirm that there will not be deterioration on the watercourse which will cause a downgrading of the current class for each individual element. This forms the water quality assessment for the Water Cycle Study. Should deterioration result a new environmental permit value was required to be calculated.

Modelling was required to be undertaken for those STWs that are predicted to fail the 'good status' target due to the proposed growth in the population that they serve. This was to determine whether improvements are required both upstream as well as at each STW.

Addressing existing diffuse pollution is beyond the remit of the WCS, and therefore the analysis was undertaken following the assumption that that the upstream diffuse sources of pollution had been addressed (i.e. 'good status' achieved upstream). This was achieved by setting the upstream quality at the level of 'good status' in the model.

Table 4 below lists all the STWs to be assessed together with the actual environmental permit values.

STW	Permited Flow - DWF Max value (m3/d)	Permited BOD 5 Day ATU 95%ile (mg/l)	Permited BOD - Max Value (mg/l)	Permited Ammoniacal Nitrogen as N 95%ile (mg/l)	Permited Ammoniacal Nitrogen as N Max value (mg/l)	Permited Phosphate Max value (mg/l)
ABINGDON (New outfall)	4524	20	55	15	44	2
ABINGDON (Lagoon)	8335	15	50	5	20	2
ABINGDON (Lagoon) from 31/03/2015) from 8335 10 50		3	May to Oct = 14; Nov to Apr = 20	2	
APPLETON	2559	16	51	4	20	
DIDCOT	11476	10	50	9	33	2

Table 4: STWs to be assessed and permitted values

DRAYTON	1672	20	56	12	41	
FARINGDON	2812	30	64			
KINGSTON BAGPUIZE	633	15	50	7	27	
OXFORD	50985	10	50	3	May to Oct = 14; Nov to Apr = 20	1
SHRIVENHAM	2842	11	50	2.5	May to Oct = 13; Nov to Apr = 20	
STANFORD IN THE VALE	650	30				
WANTAGE	6250	30	64	5	20	2

B.5 Data collection

The datasets required to assess the discharge permits are the following:

- River flow data (received from the EA)
- River quality data (received from the EA)
- Current STWs permits (received from the EA and Thames Water)
- RQP tool (received from the EA)
- Existing water quality models (received from the EA)
- Current river classifications (received from the EA)
- 2009 base line and 2013 WFD river target for BOD, P and NH₄ (received from the EA, see section B.2)
- EA guidance documents (received from the EA)
- STWs flow and quality data (received from Thames Water)
- STWs discharge information (e.g. location, receiving water, etc.) (received from Thames Water)
- GIS SIMCAT model (received from the EA)

B.6 Input data and results

The input data and RQP results are presented for each STW in a summary table. This contains also the source of each value. The STWs discharge flow statistics were calculated from the Dry Weather Flow (DWF) provided by Thames Water (see section 4.2.4.1 of main report) and as stated in the methodology the mean and standard deviation were estimates using the following relationships:

- Flow mean = 1.25*DWF
- Flow SD = 1/3*mean

Thames Water also provided all the effluent quality data for BOD and Ammonia. For Phosphate (P) data were available only for the sites with P permit limits: Abingdon Lagoon and New Stream, Didcot, Oxford and Wantage. The statistical values were derived from the 2011-13 observed values. For the others sites the data were extracted from the Thames 2009 SIMCAT model. Whilst for BOD and Ammonia Thames Water provided a future concentration value according to the future performances, for phosphate the same parameters were used for all the scenarios because this is removed by chemical dosing and therefore it was assumed that the same P reduction performance can be maintained by increasing the dosing.

All the upstream river flow data were extracted from the SIMCAT model since no low flow estimates were provided. Also the majority of the water river quality data were extracted from SIMCAT (calculated or observed) for two reasons:

• There are no water quality monitoring points upstream of the study STWs. Appendix B - Water quality assessment - FINAL JBA consulting

• The number of samples for the period 2008-13 were too low to make a sound statistical analysis.

B.6.1 Red / Amber / Green Analysis - STWs

Thames Water provided a red / amber / green traffic light score to assess the future final effluent (FE) concentration values for BOD and Ammonia. The colour definitions are shown below (for more information see section 4.2.2.1 of main report):

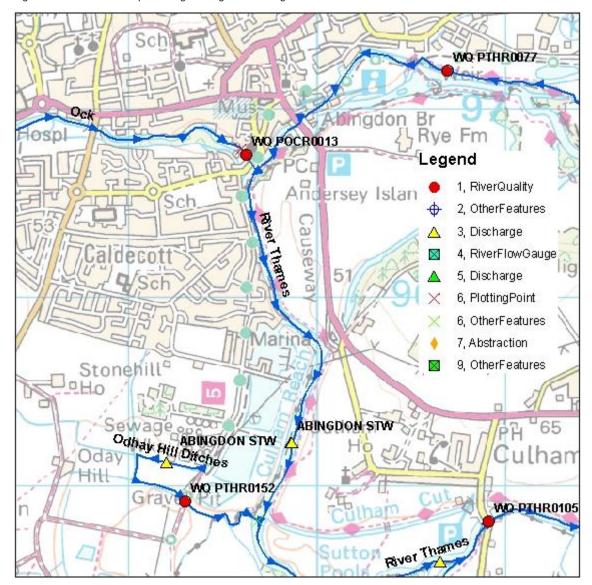
Can accommodate the proposed site allocation without upgrades	Can accommodate the proposed site allocation without upgrades but will bring the works close to its current capacity limit	Further modelling will be required to determine the scale of the WwTW upgrades that may be needed
<70% of permit (90% for DWF)	70-80% of permit (90-100% for DWF)	>80% of permit (or other known issue)(>100% for DWF)

B.6.2 WFD Compliance

Compliance against WFD targets for the 2019/20 and 2030/31 scenarios was calculated using the Current situation as baseline. Compliance / or non-compliance is indicated on the results tables as follows:

Modelled water quality is within the WFD target for the determinand in question.	Modelled water quality does not meet the WFD target for the determinand in question.
--	---

B.6.3 Abingdon STW (Lagoon outfall)


Abingdon STW has two discharge points: Lagoon and New Stream. Lagoon discharges into the Thames as shown in Figure 1. Note that this analysis only considers the water quality impact at the immediate point of discharge and the combined impacts of both outfalls once their flow combines at the confluence of the Odhay Hill Ditches with the Thames is not considered.

The status of the receiving watercourse is summarised in the Table 5 below where the baseline (2009) and the 2013 status are reported together with the objective for the waterbody.

	Overall	Ecological	Chemical Ammonia		Phosphate		
Baseline status	Poor	Poor	Good	High	Moderate		
2013 status	Moderate	Moderate	Good	High	Moderate		
Objective	Good Status by 2027	Good Status by 2027	High status by 2015	NA	2015: Moderate (Disproportionately expensive (P1c))		

Table 5: Thames status.

Figure 1: GIS SIMCAT map of Abingdon Lagoon discharge location.

©Crown copyright and database rights 2014. Vale of White Horse District Council 100019525 (2014).

© Environment Agency copyright and/or database right 2013. All rights reserved. Appendix B - Water quality assessment - FINAL Table 6 shows the input data and RQP results for Abingdon Lagoon. The works has permited values for BOD and ammonia (see Table 4) and currently it is operating within its permit. Future scenarios predict that the STW will be working below such values but it will be close to its current capacity for BOD. As predicted deterioration is less than 10%, no amendments to the permit would be required.

Table 6: input data and RQP results for Abingdon	Lagoon STW.
--	-------------

	_			Present day (2013)			2019/20			2030/31			
Param eter	Statisti c	River	Source	STW	Source	RQP Result	STW	Source	RQP Result	stw	Source	RQP Result	
	Mean	2773.5	SIMCAT	7.81			7.99	Thames		7.5	Thames		
Flow (Ml/d)	SD		calculated value just upstream	2.6	Thames NA 2	2.66	Water	NA	2.5	Water	NA		
	5%ile	611.5	STW										
BOD (mg/l)	Mean	1.25	LI/a M/O paint	4.2			4.3			4.3			
	SD	0.62	U/s WQ point PTHR0077 from SIMCAT 2013 WFD		Thames Water	2.04		Thames Water	2.04		Thames Water	2.04	
	95%ile			7.4			7.6			7.6		2.04	
	Target 90%ile	5											
	Mean	0.06	U/s WQ point PTHR0077 from SIMCA T 1.7		0.7			0.8			0.8		
Amm	SD	0.04			Thames Water 0.4	0.11		Thames Water	0.11		Thames Water	0.11	
(mg/l)	95%ile			1.7			0.11	1.9		0.11	2		0.11
	Target 90%ile	0.6	2013 WFD										
	Mean	0.17	U/s WQ point PTHR0077	1.18	Thames	Thames	1.18	Thames		1.18	Thames		
P (mg/l)	SD	0.08	from SIMCAT	0.87	Water	0.18	0.87	Water	0.18	0.87	Water	0.18	
	Target Mean	0.08	2013 WFD										

The upstream WQ point is 2.98km from the discharge point. Table 7 below shows the statistics used in SIMCAT and those derived from the observed data provided:

Table 7: statistics used in SIMCAT and those derived from the observed data for WQ point PTHR0077.

				SIMCAT model				Data 09-13			
WQ point	Distance	Pollutant	Mean	SD	Samples	Distribution	Mean SD		Samples	Data period	
PTHR0077	2.98	BOD	1.254	0.622	36	2 Log-Normal			no data		
PTHR0077	2.98	Amm	0.055	0.038	38	1 Normal	0.019	0.01	5	09 only	
PTHR0077	2.98	Р	0.167	0.081	38	2 Log-Normal	0.121	0.063	5	09 only	

Due to the low number of samples for the period 09-13 the SIMCAT data were used. This was a conservative assumption since the SIMCAT values for mean Ammonia and Phosphate are higher than those from the observed data. For consistency the SIMCAT observed data were used also for BOD. The EA guidance suggests considering the effect of the natural purification when the upstream point is some distance from the discharge point. However in order to take into account the load from the river Ock, which joins the Thames between the WQ point and the

Appendix B - Water quality assessment - FINAL

STW, no decay rate has been applied, again maintaining a degree of conservatism. Table 8 shows the SIMCAT calculated values immediately upstream of the STW:

Table 8: SIMCAT calculated values immediately upstream of the STW.

SIMCAT calculated values								
Pollutant	Mean	SD						
BOD	1.260	0.190						
Amm	0.039	0.016						
Р	0.248	0.075						

Figure 2 and Figure 3 show the 2009 SIMCAT results where phosphate is the only pollutant that breaches the target. The RQP results confirm that the upstream WFD target for phosphate is not achieved for the present-day situation and the future scenarios. "No deterioration" is achieved for all pollutants.

SIMCAT shows that the watercourse fails its phosphate target upstream of the STW. The RQP function to calculate the required discharge quality in order to meet the river target for P using the present-day situation as input data (see Table 6) reports that: "the river quality target is not achievable without improving the upstream water quality".

The RQP tool was also run using the SIMCAT calculated values for BOD to check the impact of our assumption in choosing the input data. Table 9 shows that by using a smaller SD and a similar mean there is a lower impact on the downstream river concentration.

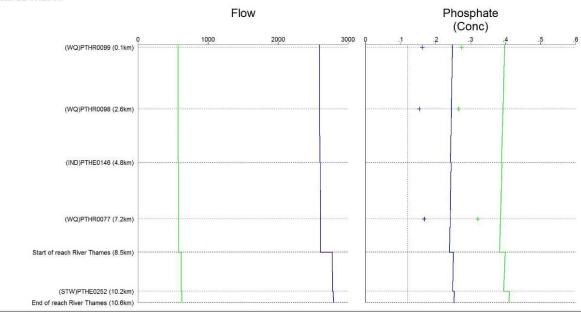
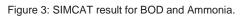
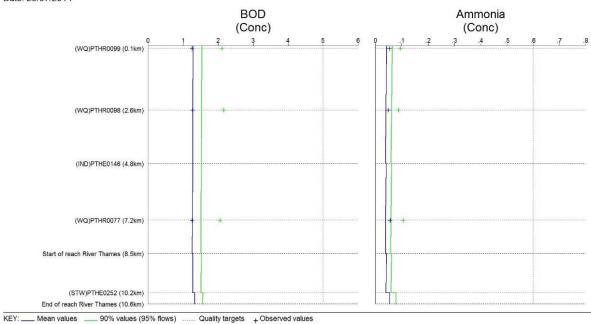

Param				Pre	sent day (2	013)		2019/20			2030/31	
eter	Statistic Rive	River	ver Source	STW	Source	RQP Result	STW	Source	RQP Result	STW	Source	RQP Result
	Mean	2773.5	SIMCAT calculated value just upstream STW	7.81	Thames Water		7.99	Thames Water		7.5	Thames Water	
Flow (MI/d)	SD			2.6		NA	2.66		NA	2.5		NA
	5%ile	611.5										
	Mean	1.26	SIMCAT	4.2	Thames Water		4.3 Thames Water 7.6			4.3	Thames Water	1.52
BOD	SD	0.19	calculated value just upstream			1.52			4.50			
(mg/l)	95%ile		STW	7.4		1.02			1.52	7.6		
	Target 90%ile	5	2013 WFD									

Table 9: input data and RQP results for BOD using SIMCAT calculated values.


Figure 2: SIMCAT result for flow and phosphate.

SIMCAT Date: 28/07/2014



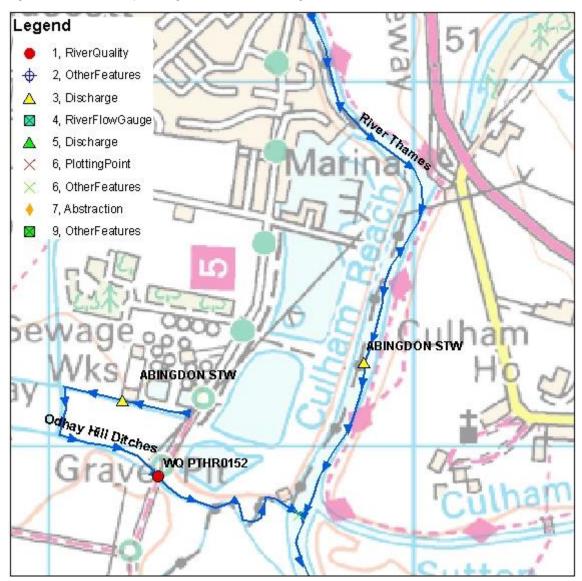
FinalManualCalib

KEY: ____ Mean values ____ 95% values Quality targets + Observed values

SIMCAT Date: 29/07/2014

FinalManualCalib

B.6.4 Abingdon STW (New Stream Outfall)


Abingdon STW has two discharge points: Lagoon and New Stream. New Stream discharges into the Odhay Hill Ditches as shown in Figure 4. Note that this analysis only considers the water quality impact at the immediate point of discharge and the combined impacts of both outfalls once their flow combines at the confluence of the Odhay Ditches with the Thames is not considered.

The status of the receiving watercourse is summarised in the Table 10 below:

Table 10: Odhay Hill Ditches status.

	Overall	Ecological	Chemical	Ammonia	Phosphate	
Baseline status	Poor	Poor Good		High	Moderate	
2013 status	Moderate	Moderate	Good	High	Moderate	
Objective	Good Status by 2027	Good Status by 2027	High status by 2015	NA	2015: Moderate (Disproportionately expensive (P1c))	

Figure 4: GIS SIMCAT map of Abingdon New Stream discharge location.

©Crown copyright and database rights 2014. Vale of White Horse District Council 100019525 (2014).

© Environment Agency copyright and/or database right 2013. All rights reserved.

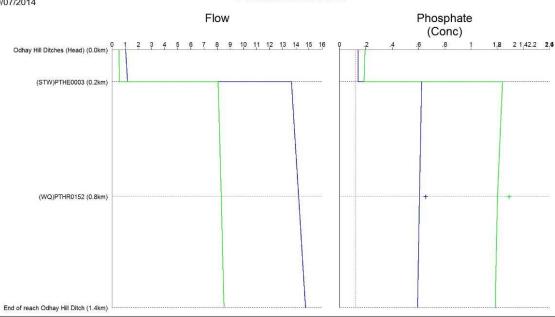
Table 11 shows the input data and RQP results for Abingdon New Stream. The works has permit values for BOD and ammonia (see Table 4) and currently it is operating within its permits. Future scenarios predict that the STW will continue to operate within its permit, but it will be close to its current capacity for BOD.

Param				Pres	sent day (2	2013)		2019/20			2030/31	
eter	Statistic	River	Source	STW	Source	RQP Result	STW	Source	RQP Result	STW	Source	RQP Result
	Mean	1.15	SIMCAT calculated value just upstream STW	2.92			2.96	Thames		2.72	Thames	
Flow (MI/d)	SD			0.97	Thames Water	NA 0.99	Water	NA	0.91	Water	NA	
	5%ile	0.53										
	Mean	4.57	SIMCAT	7.8			8			8		
BOD	SD	3.63	calculated value just upstream		Thames Water	9.85		Thames Water	10.07		Thames Water	10.04
(mg/l)	95%ile		STW	12.8			13.1		10.07	13.2		10.01
	Target 90%ile	5	2013 WFD									
	Mean	0.83	SIMCAT	2.2			2.4			2.5		3.61
Amm	SD	0.33	calculated value just upstream		Thames Water	3.23		Thames Water	0.55		Thames Water	
(mg/l)	95%ile		STW	5.1		5.25	5.7		3.55	5.9		
	Target 90%ile	0.6	2013 WFD									
	Mean	0.14	SIMCAT calculated	1.38	Thames		1.38	.38 Thames	1.06	1.38	Thames	1.04
P (mg/l)	SD	0.034	value just upstream STW	0.76	Water	1.06	0.76	Water		0.76	Water	
	Target Mean	0.085	2013 WFD									

Table 11: input data and RQP results for Abingdon New Stream STW.

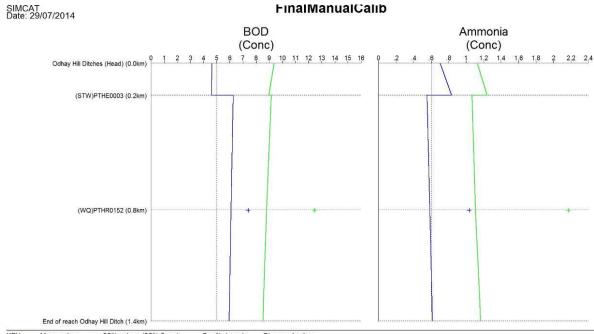
There is no WQ point upstream of the STW and the river quality data were taken from the SIMCAT calculated values just upstream of the discharge point. The model underestimates the observed data for BOD and ammonia as shown in Figure 5 and Figure 6. However it indicates a failure of the targets for all the pollutants.

The RQP results indicate that the watercourse fails its targets for BOD, NH_4 and P for the present-day situation and the future scenarios. There is a 2% deterioration for BOD for both scenarios; 10% and 12% deterioration for ammonia for 2019/20 and 2030/31 respectively; no deterioration for phosphate with small improvement for the 2030/31 scenario.


SIMCAT shows that phosphate and ammonia fail their targets upstream of the STW. The RQP function to calculate the required discharge quality in order to meet the river target (and nodeterioration) using the present-day scenarios for all the pollutants (see Table 11) as input data gives the following results (Table 12):

Pollutant	Pollutant Target		SD	95%ile	
BOD	5	3.48	1.24	5.96	
Amm	0.6	0.41	0.15	0.71	
Р	0.09	0.08	0.03	0.13	

Table 12: STW discharge quality required to meet WFD targets - Abingdon STW (New Stream)


Figure 5: SIMCAT result for flow and phosphate.

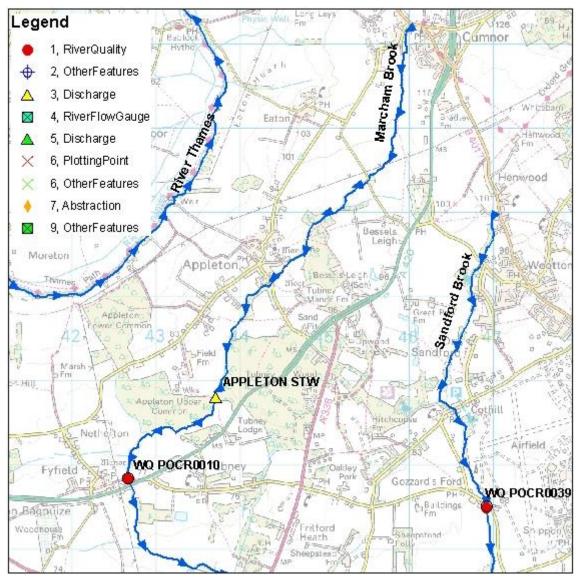
SIMCAT Date: 29/07/2014

KEY: ____ Mean values ____ 90% values (95% flows) _____ Quality targets + Observed values

Figure 6: SIMCAT result for BOD and Ammonia.

KEY: ____ Mean values ____ 90% values (95% flows) Quality targets + Observed values

FinalManualCalib


B.6.5 Appleton STW

Appleton STW discharges into the Marcham Brook as shown in Figure 7.

The status of the receiving watercourse is summarised in the Table 13 below: Table 13: Marcham Brook status.

	Overall	Ecological	Chemical	Ammonia	Phosphate	
Baseline	Moderate	Moderate	not	High	Bad	
status	woderate	Moderate	available	riigii		
2013	Moderate	Moderate	not	High	Poor	
status	iviouerate	Moderate	available	Flight		
Objective	Good Status by 2027	Good Status by 2027	High status by 2015	NA	2015: Bad (Disproportionately expensive (P1a))	

Figure 7: GIS SIMCAT map of Appleton discharge location.

©Crown copyright and database rights 2014. Vale of White Horse District Council 100019525 (2014).

© Environment Agency copyright and/or database right 2013. All rights reserved.

Table 14 shows the input data and RQP results for Appleton. The works has permit values for BOD and ammonia (see Table 4) and currently it is operating within its permits. Future scenarios predict that the STW will continue to operate within its permit but it will be close to its current capacity for BOD.

Appendix B - Water quality assessment - FINAL

Param				Pres	sent day (2	2013)		2019/20			2030/31	
eter	Statistic	River	Source	STW	Source	RQP Result	STW	Source	RQP Result	STW	Source	RQP Result
	Mean	5.06	SIMCAT	1.04			1.19	Thames		1.06	Thames	NA
Flow (MI/d)	SD		calculated value just upstream STW	0.35	Thames Water	NA	0.4	Water	NA	0.35	Water	
	5%ile	1.9										
	Mean	0.585	SIMCAT	6.6			7.1			7.1		
BOD	SD	0.097	calculated value just upstreamThames WaterSTW10.6	2.58		Thames Water	2.98		Thames Water	2.8		
(mg/l)	95%ile			10.6		2.00	11.4		2.90	11.5		2.0
	Target 90%ile	5										
	Mean	0.011	SIMCAT	0.6			0.8			0.9		0.4
Amm	SD	0.005	calculated value just upstream		Thames Water	0.27		Thames Water	0.4		Thames Water	
(mg/l)	95%ile		STW	1.8		0.27	2.5		0.4	2.6		
	Target 90%ile	0.6	2013 WFD									
	Mean	1.23	SIMCAT calculated	5.37	SIMCAT		5.37	SIMCAT		5.37	SIMCAT	2.05
P (mg/l)	SD	0.152	value just upstream STW	1.44	values	2.03	1.44	values	2.12	1.44	values	
	Target Mean	0.084	2013 WFD									

Table 14: input data and RQP results for Appleton STW.

There is not a WQ point upstream of the STW and the river quality data were taken from the SIMCAT calculated values just upstream of the discharge point. The SIMCAT model overestimates the concentration for ammonia and gives a good calibration for phosphate and BOD as shown in Figure 8 and Figure 9. Only phosphate fails its target.

The RQP results show as well that only phosphate is failing its target for the present-day situation and the future scenarios. There is a 16% and 9% deterioration for BOD for 2019/20 and 2030/31 respectively; 48% deterioration for ammonia for both scenarios; 4% and 1% deterioration for phosphate for 2019/20 and 2030/31 respectively.

SIMCAT shows that phosphate is failing its target upstream of the STW. The RQP function to calculate the required discharge quality in order to meet the river target for P using the presentday situation as input data (see Table 14) gives as result: "the river quality target is not achievable without improving the upstream water quality".

Since the river target could not be reached for P using the actual condition for the upstream river quality values, the RQP function to calculate the required discharge quality in order to meet the river target was run assuming that the river upstream has Good Ecological Status (GES). A mean of 0.08mg/l P4 and a SD of 0.027 mg/l were used. The worst case scenario was modelled first to verify if the required discharge quality in order to meet the river target, could be achieved with the Best Available Technology (BAT) (for P this is a mean of 0.5mg/l). The other scenarios were modelled if this was not achieved. Table 15 shows that the required target cannot be achieved for any of the scenarios with BAT even when assuming GES upstream of the discharge point.

Scenario	Pollutant	Target	Mean	SD	95%ile
2019/20	Р	0.084	0.08	0.02	0.12
2030/31	Р	0.084	0.08	0.02	0.12
Present	Р	0.084	0.1	0.03	0.15

New permit values were calculated for the determinands that present a deterioration of more than 10% or a class deterioration. These were calculated using the present day concentration in the river plus a 10% deterioration as the river target or, if there was a class deterioration, the limit of the current class. Table 16 shows the results for BOD and ammonia where for both BOD and ammonia the present day concentration + 10% deterioration was used because class deterioration was not predicted. For Ammonia the 10% deterioration matches with the "High" class boundary. Both permit values can be achieved with BAT (for ammonia this is a 95%ile of 1mg/l, for BOD is a 95%ile of 5mg/l).

	Scenario with the	Present day + 10%	Permit values deterioration"	equired to meet "no-		
Parameter	strictest permit requirement	deterioration or class boundary target	Mean Quality	Standard Deviation	95th Percentile	
BOD	2019/20	2.84	6.83	2.19	10.88	
Ammonia	2030/31	0.30	0.62	0.71	1.93	
Phosphate -		-	-	-	-	

Figure 8: SIMCAT result for flow and phosphate.

SIMCAT Date: 29/07/2014

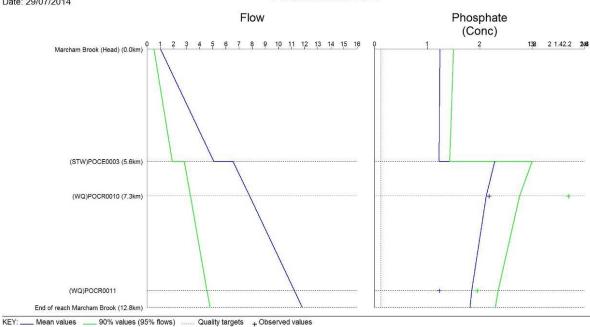
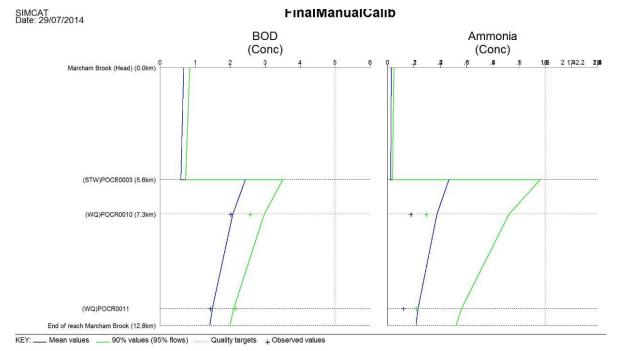
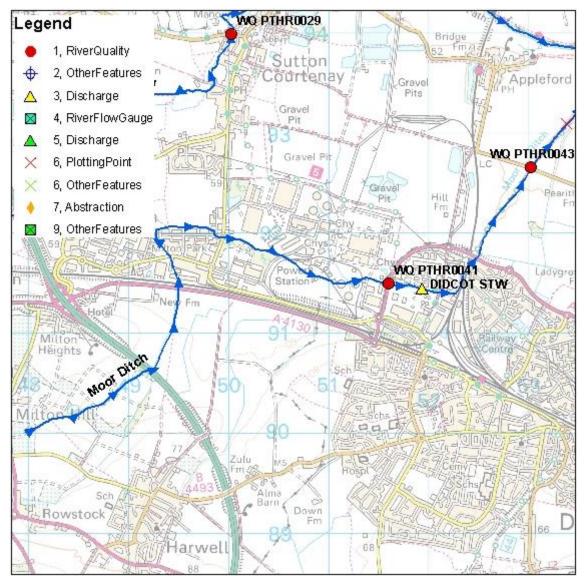



Figure 9: SIMCAT result for BOD and Ammonia.


B.6.6 Didcot STW

Didcot STW discharges into the Moor Ditch as shown in Figure 10.

The status of the receiving watercourse is summarised in the Table 17 below: Table 17: Moor Ditch status.

	Overall	Ecological	Chemical	Ammonia	Phosphate
Baseline status	Poor	Poor	Good	High	Moderate
2013 status	Poor	Poor	Good	Good	Moderate
Objective	Good Status by 2027	Good Status by 2027	High status by 2015	NA	2015: Moderate (Disproporti onately expensive (P1b))

Figure 10: GIS SIMCAT map of Didcot discharge location.

©Crown copyright and database rights 2014. Vale of White Horse District Council 100019525 (2014). © Environment Agency copyright and/or database right 2013. All rights reserved.

Table 18 shows the input data and RQP results for Didcot. The works has permit values for BOD and ammonia (see Table 4) and currently it is operating within its permits. Future scenarios predict that the STW will continue to operate within its permit but it will be close to its current capacity for BOD. The RQP tool did not allow the 95% ile provided by Thames Water for ammonia (2.8mg/l) to be entered, and therefore the highest value accepted (2.7mg/l) was used instead as reported in the summary table.

Param				Pres	sent day (2	2013)		2019/20			2030/31	
eter	Statistic	River	Source	STW	Source	RQP Result	STW	Source	RQP Result	STW	Source	RQP Result
	Mean	9.64	SIMCAT	10			10.9	Thames		11.8	Thames	NA
Flow (MI/d)	SD		calculated value just upstream	3.33	Thames Water	NA	3.62	Water	NA	3.94	Water	
	5%ile	2.42	STW									
	Mean	1.87		3			3.3			3.8		
BOD	SD	1.05	U/s WQ point PTHR0041 from SIMCAT		Thames Water 3	3.56		Thames Water	3.84		Thames Water	4.33
(mg/l)	95%ile			5		0.00	5.5		3.04	6.3		4.00
	Target 90%ile	5	2013 WFD									
	Mean	0.06		0.7		0.93 (95%	1.1			2.1		2.9 (95%
Amm	SD	0.05	U/s WQ point PTHR0041 from SIMCAT		Thames Water			Thames Water	1.53 (95%		Thames Water	
(mg/l)	95%ile			2.8		used =2.7)	4.4		used =4.2)	8.3		used =8.1)
	Target 90%ile	0.6	2013 WFD									
	Mean	0.18	U/s WQ point PTHR0041	1.14	Thames		1.14	Thames		1.14	Thames	
P (mg/l)	SD	0.056	from SIMCAT	1.06	Water	0.73	1.14	Water	0.75	1.06	Water	0.77
	Target Mean	0.086	2013 WFD									

Table 18: input data and RQP results for Didcot STW.

The upstream WQ point is 0.36km from the discharge point and the table below shows the statistics used in SIMCAT and those derived from the observed data provided:

Table 19: statistics used in SIMCAT and those derived from the observed data for WQ point PTHR0041.

		SIMCAT model Data 09-13								
WQ point	Distance	Pollutant	Mean	SD	Samples	Distribution	Mean	SD	Samples	Data period
PTHR0041	0.36	BOD	1.868	1.051	35	Log-Normal				no data
PTHR0041	0.36	Amm	0.058	0.048	38	Log-Normal	0.079	0.071	17	09 and 13
PTHR0041	0.36	Р	0.180	0.056	38	Log-Normal	0.137	0.044	17	09 and 13

Due to the low number of samples for the period 09-13 the SIMCAT data were used. Because of the close distance to the discharge point the effect of the natural purification is negligible.

Figure 11 and Figure 12 show the 2009 SIMCAT results where phosphate is the only pollutant that breaches the target. The RQP results confirm that phosphate is still not reaching its target

for the present-day situation and the future scenarios and indicate that ammonia also fails to reach its targets all scenarios.

There is an 8% and 22% deterioration for BOD for 2019/20 and 2030/31 respectively; 65% and 212% for ammonia for 2019/20 and 2030/31 respectively; 3% and 5% deterioration for phosphate for 2019/20 and 2030/31 respectively.

SIMCAT shows that phosphate is failing its target upstream of the STW. The RQP function to calculate the required discharge quality in order to meet the river target using the present-day situation for all the pollutants (see Table 18) as input data gives the following results below (Table 20):

Table 20: STW discharge quality required to meet WFD targets - Didcot STW

Pollutant	Target	Mean	SD	95%ile
Amm	0.6	0.43	0.95	1.73
Р	0.09	0.02	0.01	0.05

Since the river target could not be reached for P with BAT (for P this is a mean of 0.5mg/l, for ammonia this is a 95% ile of 1mg/l) using the actual condition for the upstream river quality values, the RQP function to calculate the required discharge quality in order to meet the river target was run assuming that the river upstream has GES. Amean of 0.086mg/l and a SD of 0.028mg/l were used. The worst case scenario was modelled first to verify if the required discharge quality, in order to meet the river target, could be achieved with the BAT. The other scenarios were modelled if this was not achieved. Table 21 shows that the required target cannot be achieved for any of the scenarios with BAT even when assuming GES upstream of the discharge point.

Table 21: Permit values required to meet river targets assuming GES upstream

Scenario	Pollutant	Target	Mean	SD	95%ile
2030/31	Р	0.086	0.09	0.07	0.23
2019/20	Р	0.086	0.08	0.08	0.23
Present	Р	0.086	0.08	0.07	0.22

New permit values were calculated for the determinands that present a deterioration of more than 10% or a class deterioration. These were calculated using the present day concentration in the river plus a 10% deterioration as the river target or, if there was a class deterioration, the limit of the current class. Table 22 shows the results for BOD and Ammonia where for both determinands the present day concentration + 10% deterioration was used because a class deterioration was not predicted. Both permit values can be achieved with BAT (for ammonia this is a 95% of 1mg/l, for BOD is a 95% of 5mg/l)

Table 22: 'No deterioration' permit values for Didcot STW

	Scenario with the	Present day + 10%	Permit values required to meet "no- deterioration"				
Parameter	strictest permit requirement	deterioration or class boundary target	Mean Quality	Standard Deviation	95th Percentile		
BOD	2030/31	3.92	3.42	1.18	5.61		
Ammonia	2030/31	1.02	0.72	1.58	2.89		
Phosphate	-	-	-	-	-		

Figure 11: SIMCAT result for flow and phosphate.

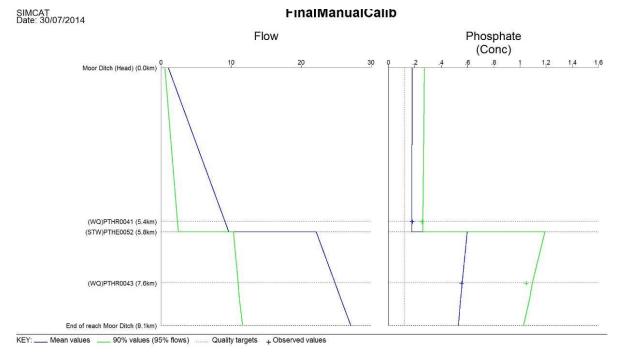
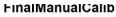
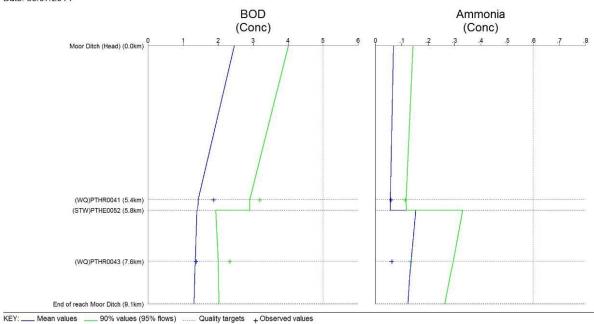
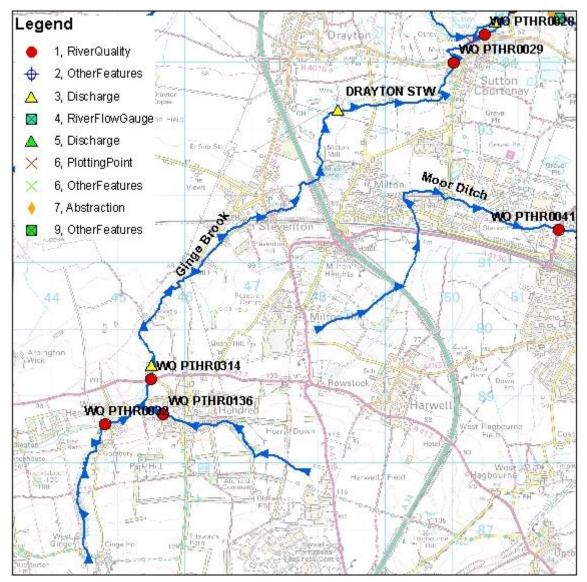




Figure 12: SIMCAT result for BOD and Ammonia.


B.6.7 Drayton STW

Drayton STW discharges into the Ginge Brook as shown in Figure 13.

The status of the receiving watercourse is summarised in the Table 23 below: Table 23: Ginge Brook status.

	Overall	Ecological	Chemical	Ammonia	Phosphate
Baseline status	Good	Good Not available		High	Good
2013 status	Poor	Poor	Poor Not available		Poor
Objective	Good Status by 2015	Good Status by 2015	NA	NA	NA

Figure 13: GIS SIMCAT map of Drayton discharge location.

©Crown copyright and database rights 2014. Vale of White Horse District Council 100019525 (2014).

© Environment Agency copyright and/or database right 2013. All rights reserved.

Table 24 shows the input data and RQP results for Drayton. The works has permit values for BOD and ammonia (see Table 4) and currently it is operating within its permits. Future scenarios predict that the STW will be working above such values for BOD with upgrades

required from 2019/20 scenario and below such values for ammonia reaching its capacity in 2019/20 scenario and with upgrades required from 2030/31 scenario.

Table 24: input data and RQP results for Drayton STW.

Param				Pres	sent day (2	2013)		2019/20			2030/31	
eter	Statistic	River	Source	STW	Source	RQP Result	STW	Source	RQP Result	STW	Source	RQP Result
	Mean	22	SIMCAT	1.4			1.68	Thames		1.52	Thames	
Flow (MI/d)	SD		calculated value just upstream	0.47	Thames NA 0 Water NA 0	0.56	Water	NA	0.51	Water	NA	
	5%ile	10.6	STW									
	Mean	1.27	SIMCAT	10.3			11.3			11.4		
BOD	SD	0.57	calculated value just upstream		Thames Water 2.73	Water		Thames Water	2.98		Thames Water	2.89
(mg/l)	95%ile		STW	19.1		2.13	20.9		2.90	21.1		2.03
	Target 90%ile	5	2013 WFD									
	Mean	0.05	SIMCAT	2.5			3.7			3.8		
Amm	SD	0.02	calculated value just upstream		Thames Water			Thames Water	0.63		Thames Water	0.59
(mg/l)	95%ile		STW	6.4		0.38	9.5		0.63	9.8		
	Target 90%ile	0.6	2013 WFD									
	Mean	0.075	SIMCAT calculated value just	5.93	SIMCAT		5.93	SIMCAT		5.93	SIMCAT	0.48
P (mg/l)	SD	0.019	upstream STW	1.5	values	0.46	1.5	values	0.52	1.5	values	
	Target Mean	0.086	2013 WFD									

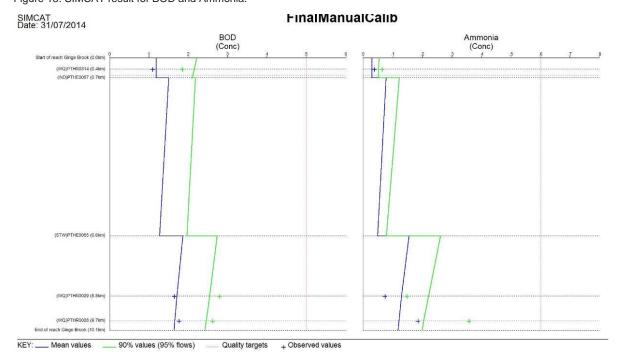
There is no WQ point upstream of the STW and the river quality data were taken from the SIMCAT calculated values just upstream of the discharge point. The model presents a good calibration with the WQ point PTHR0314 upstream of the industrial discharge as shown in Figure 14 and Figure 15 and indicates a failure of the target for phosphate.

The RQP results show as well that phosphate fails its target for the present-day situation and the future scenarios and ammonia fails its target for the 2019/20 scenario. There is a 9% and 6% deterioration for BOD for 2019/20 and 2030/31 respectively; 66% and 55% for ammonia for 2019/20 and 2030/31 respectively; 13% and 4% deterioration for phosphate for 2019/20 and 2030/31 respectively.

The RQP function to calculate the required discharge quality in order to achieve no deterioration and meet the river target using the 2019/20 scenarios for ammonia, and the present-day situations for phosphate (see Table 24) as input data gives the following results (Table 25):

-	Tab	le	25	5: S	TW dis	charge	e quality req	uired to mee	t WFD targe	ts - Drayton STW
- [_					1

Pollutant	Target	Mean	SD	95%ile
Amm	0.6	2.14	1.72	5.45
Р	0.09	0.31	0.08	0.46

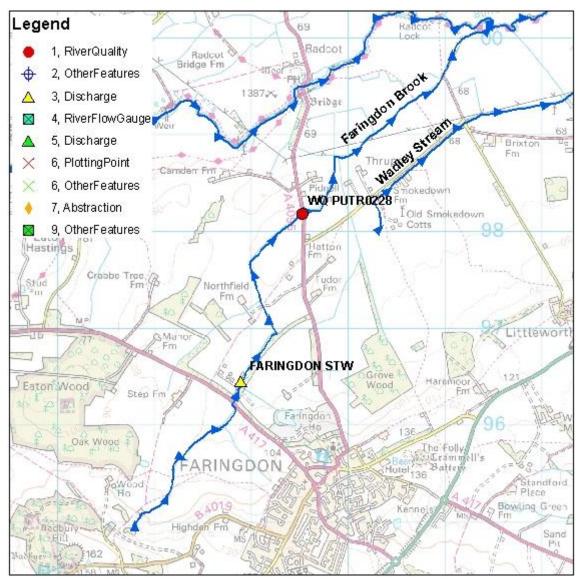


To achieve no deterioration for BOD for future scenarios, improvements to the STW would be required.

SIMCAT Date: 31/07/2014 FinalManualCalib Phosphate (Conc) Flow 1,1 1,2 1,3 1,4 1,5 1,6 Start of reach Ginge Brook (0.0km) (WQ)PTHR0314 (0.4km (IND)PTHE0057 (0.7km (STW)PTHE0055 (6.6km) (WQ)PTHR0029 (8.8km) (WQ)PTHR0028 (9.7km) End of reach Ginge Brook (10.1km) KEY: ____ Mean values ____ 90% values (95% flows) Quality targets + Observed values

Figure 14: SIMCAT result for flow and phosphate.

Figure 15: SIMCAT result for BOD and Ammonia.



B.6.8 Faringdon STW

Faringdon STW discharges into the Faringdon Brook as shown in Figure 16. The status of the receiving watercourse is summarised in the Table 26 below: Table 26: Faringdon status.

	Overall	Ecological	Chemical	Ammonia	Phosphate
Baseline status	Moderate	Moderate	Good	High	Moderate
2013 status	Moderate	Moderate	Fail	High	Moderate
Objective	Good Status by 2017	Good Status by 2017	High Status by 2015	NA	2015: Moderate (Disproporti onately expensive (P1c))

Figure 16: GIS SIMCAT map of Faringdon discharge location.

©Crown copyright and database rights 2014. Vale of White Horse District Council 100019525 (2014). © Environment Agency copyright and/or database right 2013. All rights reserved.

Table 27 shows the input data and RQP results for Faringdon. The works has permit values for BOD (see Table 4) and currently it is operating within its permits. Future scenarios predict that the STW will continue to operate within its permit but it will be close to its permited capacity for BOD.

Table 27: input data and RQF	P results for Faringdon STW.
------------------------------	------------------------------

Param eter	Statistic	River	Source	Present day (2013)		2019/20			2030/31			
				STW	Source	RQP Result	STW	Source	RQP Result	STW	Source	RQP Result
Flow (Ml/d)	Mean	2.84	SIMCAT calculated value just upstream STW	1.39	Thames Water	NA	1.74	Thames		1.58	Thames	NA
	SD			0.46			0.58	Water	NA	0.53	Water	
	5%ile	0.9										
BOD (mg/l)	Mean	0.51	SIMCAT calculated value just upstream STW 2013 WFD	10			11.2		8.77	11.4		8.45
	SD	0.18			Thames Water	6.97		Thames Water			Thames Water	
	95%ile			20			22.5			22.8		
	Target 90%ile	5										
Amm (mg/l)	Mean	0.03	SIMCAT calculated value just upstream STW	4.3	Thames Water	2.97	6.9		5.36	7.4		
	SD	0.06						Thames Water			Thames Water	5.49
	95%ile			9			14.5			15.5		5.49
	Target 90%ile	0.6	2013 WFD									
P (mg/l)	Mean	1.79	SIMCAT calculated value just upstream STW	5.33	SIMCAT		5.33	SIMCAT		5.33	SIMCAT	3.2
	SD	0.35		0.62	values	3.1	0.62	values	3.28	0.62	values	
	Target Mean	0.08	2013 WFD									

There is no WQ point upstream of the STW and the river quality data were taken from the SIMCAT calculated values just upstream of the discharge point. The model presents a good calibration for ammonia and phosphate but overestimates the concentration for BOD as shown in Table 27 and Table 31 and indicates a failure of the target for all pollutants.

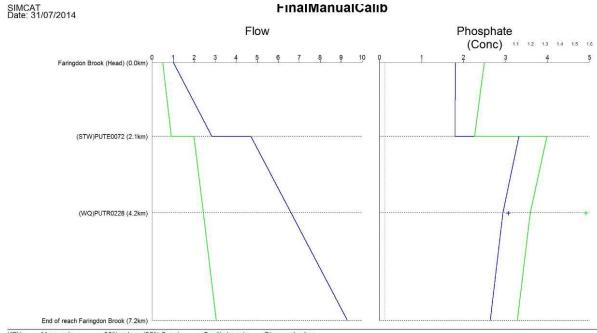
The RQP results indicate that the watercourse fails its targets for BOD, NH4 and P for the present-day situation and the future scenarios. There is a 26% and 21% deterioration for BOD for 2019/20 and 2030/31 respectively; 80% and 85% for ammonia for 2019/20 and 2030/31 respectively; 6% and 3% deterioration for phosphate for 2019/20 and 2030/31 respectively.

SIMCAT shows that phosphate is failing its target upstream of the STW. The RQP function to calculate the required discharge quality in order to meet the river target using the present-day situation for all the pollutants (see Table 27) as input data gives the following results for BOD and ammonia (Table 28):

Table 28: STW discharge quality required to meet WFD targets - Faringdon STW

Pollutant	Target	Mean	SD	95%ile	
BOD	5	7.18	3.66	14.19	
Amm	0.6	0.86	0.48	1.78	

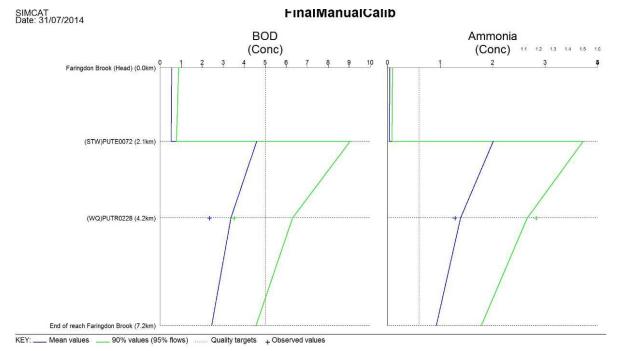
Appendix B - Water quality assessment - FINAL


For phosphate the RQP tool reports that "the river quality target is not achievable without improving the upstream water quality".

In order to prevent a water quality deterioration at Faringdon for future scenarios, sewage treatment would have to be improved to meet higher standards for BOD and Ammonia. In order to meet the 'No deterioration' permit, the revised permit values shown in Table 29 must be met.

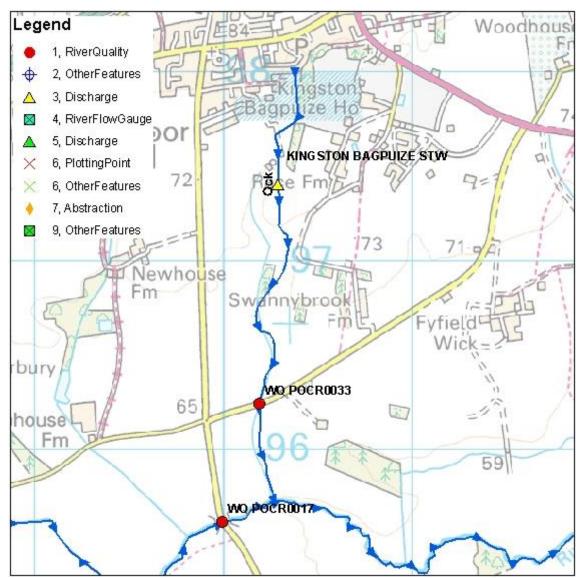
	Scenario with the	Present day 90 percentile	Permit values required to meet "no- deterioration"				
Parameter	strictest permit requirement	(the "no- deterioration " target)	Mean Quality	Standard Deviation	95th Percentile		
BOD	19/20	6.97	9.87	3.29	15.97		
Ammonia	30/31	2.97	4.58	1.5	7.31		
Phosphate	-	-	-	-	-		

Table 29: 'No deterioration' permit values for Farringdon STW


Figure 17: SIMCAT result for flow and phosphate.

KEY: ____ Mean values ____ 90% values (95% flows) Quality targets + Observed values

Figure 18: SIMCAT result for BOD and Ammonia.



B.6.9 Kingston Bagpuize STW

Kingston Bagpuize STW discharges into the River Ock as shown in Figure 19. The status of the receiving watercourse is summarised on the Table 30 below: Table 30: River Ock status.

	Overall	Ecological	Chemical	Ammonia	Phosphate
Baseline status	Moderate	Moderate Good		High	Moderate
2013 status	Moderate	Moderate	Good	High	Poor
Objective	Good Status by 2027	Good Status by 2027	High Status by 2015	NA	2015: Moderate (Disproporti onately expensive (P1a))

Figure 19: GIS SIMCAT map of Kingston Bagpuize discharge location.

©Crown copyright and database rights 2014. Vale of White Horse District Council 100019525 (2014). © Environment Agency copyright and/or database right 2013. All rights reserved.

Table 31 shows the input data and RQP results for Kingston Bagpuize without contingency sites. The works has permit values for BOD and ammonia (see Table 4) and currently it is operating within its permits. Future scenarios predict that the STW will be working below such values for BOD and above for ammonia from 2019/20 scenario. Upgrades are needed for ammonia from 2019/20 scenario. The STW is also predicted to reach its hydraulic capacity by 2019/20.

Para	Statisti			Pres	sent day (2	2013)		2019/20			2030/31	
mete r	C	River	Source	STW	Source	RQP Result	STW	Source	RQP Result	STW	Source	RQP Result
	Mean	1.3	SIMCAT	0.68			0.75	Thames		0.7	Thames	
Flow (MI/d)	SD		calculated value just upstream	0.23	Thames Water	NA	0.25	Water	NA	0.23	Water	NA
	5%ile	0.56	STW									
	Mean	0.66	SIMCAT	6			6.4			6.5		
BOD	SD	1.34	value just upstream		Thames Water			4.29		Thames Water	4.00	
(mg/l)	95%ile		STW	9.3		3.65	9.9		4.29	10.1		4.23
	Target 90%ile	5	2013 WFD									
	Mean	0.03	SIMCAT	1.3			1.7			1.9		
Amm	SD	0.02	value just upstream		Thames Water	1.11		Thames Water	1.55		Thames Water	1.69
(mg/l)	95%ile		STW	5		1.11	6.5		1.55	7.2		1.05
	Target 90%ile	0.6	2013 WFD									
	Mean	1.74	SIMCAT calculated value just	6.39	SIMCAT		6.39	SIMCAT		6.39	SIMCAT	
P (mg/l)	SD	1.65	upstream STW	1.02	values	3.44	1.02	values	3.55	1.02	values	3.48
	Target Mean	0.08	2013 WFD									

Table 31: input data and RQP results for Kingston Bagpuize STW without contingencies sites.

There is not a WQ point upstream of the STW and the river quality data were taken from the SIMCAT calculated values just upstream of the discharge point. The model underestimates the concentration for ammonia as shown in Figure 20 and Figure 21 and indicates a failure of the target for ammonia and phosphate.

The RQP results also indicate that ammonia and phosphate fail to meet their target for the present-day situation and the future scenarios. There is a 11% and 10% deterioration for BOD for 2019/20 and 2030/31 respectively; 40% and 52% for ammonia for 2019/20 and 2030/31 respectively; 3% and 1% deterioration for phosphate for 2019/20 and 2030/31 respectively.

The RQP tool was used to calculate the required discharge quality in order to meet the river target using the present-day situation for ammonia and P (see Table 31 Error! Reference source not found.). The results for ammonia are shown in Table 32 below:

Table 32: STW discharge quality required to meet WFD targets - Kingston Bagpuize STW

Pollutant	Target	Mean	SD	95%ile
Amm	0.6	0.68	1.45	2.72

For phosphate the RQP tool reports that "the river quality target is not achievable without improving the upstream water quality".

Figure 20: SIMCAT result for flow and phosphate.

SIMCAT Date: 31/07/2014 FinalManualCalib Flow Phosphate (Conc) 1.1 1.2 1.3 1.4 1.5 1.6 2 3 34 2 3 1 1 õ Ock (Head) (0.0km) (STW)POCE0029 (0.7km) (WQ)POCR0033 (2.0km) End of reach Ock (2.5km)

KEY: ____ Mean values ____ 90% values (95% flows) ____ Quality targets + Observed values

Figure 21: SIMCAT result for BOD and Ammonia.

SIMCAT Date: 31/07/2014

FinalManualCalib BOD Ammonia (Conc) 11 1.2 1.3 1.4 1.5 1.6 (Conc) .8 1,2 1,4 156 1 Ock (Head) (0.0km) (STW)POCE0029 (0.7km) (WQ)POCR0033 (2.0km) End of reach Ock (2.5km) KEY: ____ Mean values ____ 90% values (95% flows) Quality targets + Observed values

B.6.10 Oxford STW

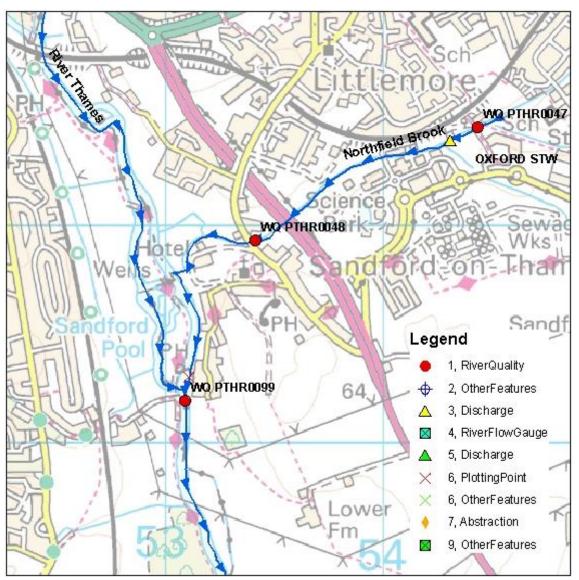

Oxford STW discharges into the Northfield Brook as shown in Figure 22.

Table 33: Northfield Brook status.

	Overall	Ecological	Chemical	Ammonia	Phosphate
Baseline status	Moderate	Moderate	derate Not available		Poor
2013 status	Moderate Moder		Good	Poor	Poor
Objective	Good Status by 2027	Good Status by 2027	Not available	NA	2015: Poor (Disproporti onately expensive (P1a))

Figure 22: GIS SIMCAT map of Oxford discharge location.

©Crown copyright and database rights 2014. Vale of White Horse District Council 100019525 (2014).

© Environment Agency copyright and/or database right 2013. All rights reserved.

Table 34 shows the input data and RQP results for Oxford. The works has permit values for BOD and ammonia (see Table 4) and currently it is operating within its permits. Future scenarios predict that the STW will continue to operate within its BOD permit, but will exceed its ammonia permit by the 2019/20 scenario. Upgrades are needed for ammonia from 2019/20 scenario. The works also gets close to its flow permit in the 2019/20 scenario, but the flow Appendix B - Water quality assessment - FINAL 34

headroom is predicted to improve by 2030/31 as the impacts of reduced water consumption are felt. As deterioration is less than 10%, no changes to permits are required.

Table 34: input data and RQP results for Oxford STW.

Param	Statisti			Pres	sent day (2			2019/20			2030/31	
eter	c	River	Source	STW	Source	RQP Result	STW	Source	RQP Result	STW	Source	RQP Result
	Mean	6.42	SIMCAT	59.81			59.1	Thames		54.7	Thames	
Flow (MI/d)	SD		calculated value just upstream	19.94	Thames Water	NA	VA 19.7 Wa	Water	NA	18.2	Water	NA
	5%ile	0.94	STW									
	Mean	3.28	U/s WQ point PTHE0144	3.5			3.5			3.5		
BOD	SD	1.85	(old ref. PTHR0047)		Thames Water	5.18		Thames Water	5.18		Thames Water	5.17
(mg/l)	95%ile		from 09-13 data	6		5.16	6		5.16	6		5.17
	Target 90%ile	5	2013 WFD									
	Mean	0.74	U/s WQ point PTHE0144	1			1.1			1.1		
Amm	SD	1.42	(old ref. PTHR0047)		Thames Water	2.13		Thames Water	2.29		Thames Water	2.28
(mg/l)	95%ile		from 09-13 data	3		2.10	3.2		2.29	3.2		2.20
	Target 90%ile	0.6	2013 WFD									
	Mean	0.03	SIMCAT calculated value just	0.83	Thames		0.83	Thames		0.83	Thames	
P (mg/l)	SD	0.004	upstream STW	0.44	Water	0.78	.78 0.44	Water	0.78	0.44	Water	0.77
	Target Mean	0.08	2013 WFD									

There is a WQ point 0.14km upstream of the STW called PTHR0047 that now is called PTHE0144. There are no observed values in SIMCAT for this WQ point. The river quality data were taken from the 2009-13 observed data for BOD and ammonia. Phosphate statistics were taken from the SIMCAT calculated values just upstream of the discharge point since there are no observed data. Table 35 below summarises the statistics calculated in Aardvark (see Figure 23 and Figure 24).

Table 35: Aardvark statistics for PTHE0144.

			Data 09-13					
WQ point	Distance	Pollutant	Mean	SD	Samples	Data period		
PTHE0144	0.14	BOD	3.276	1.854	175	09-13		
PTHE0144	0.14	Amm	0.736	1.422	58	09-13		
PTHE0144	0.14	Р				no data		

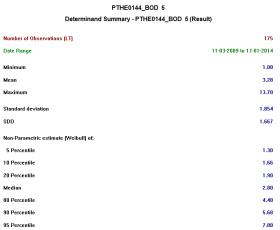
The Aardvark analysis has shown no seasonality, trends or step changes and a good fit with the LogNormal plot for both pollutants as shown on Figure 25 and Figure 26. Because of the close distance to the discharge point the effect of the natural purification is negligible.

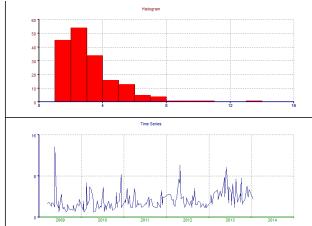
The SIMCAT model underestimates the concentration for BOD, overestimates the concentration for ammonia and gives a good calibration for phosphate as shown in Figure 27 and Figure 28 and indicates that ammonia and phosphate fail their targets.

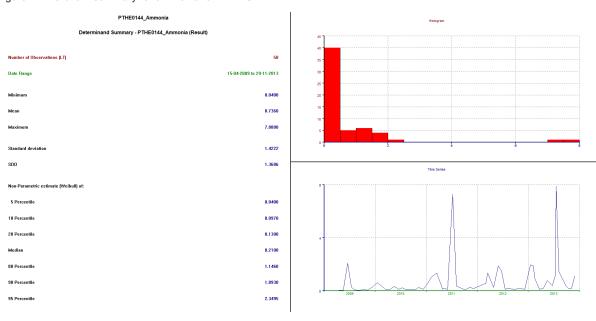
The RQP results show that all the pollutants are failing their targets for the present-day situation and the future scenarios. There is no deterioration for BOD for both scenarios; 8% and 7% deterioration for ammonia for 2019/20 and 2030/31 respectively and no deterioration for phosphate with a small improvement predicted for the 2030/31 scenario..

The RQP tool was used to calculate the discharge quality required in order to meet the river target using the present-day situation for all the pollutants as input data (see Table 34) gives the following results (Table 36):

Pollutant	Target	Mean	SD	95%ile
BOD	5	3.43	1.28	5.83
Amm	0.6	0.24	0.26	0.72
Р	0.08	0.08	0.04	0.17

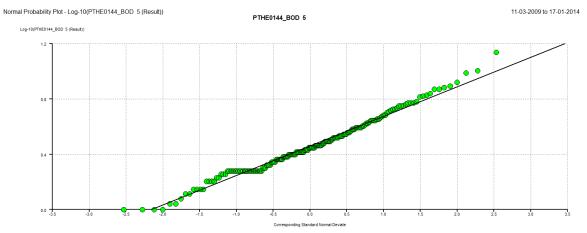

Table 36: STW discharge quality required to meet WFD targets - Oxford STW


Since the river target could not be reached for P and ammonia with BAT (for P this is a mean of 0.5mg/l, for ammonia a 95%ile of 1mg/l, for BOD is a 95%ile of 5mg/l), using the actual condition for the upstream river quality values, the RQP function to calculate the required discharge quality in order to meet the river target was run assuming that the river upstream has GES for ammonia. For P the river quality upstream for the present-day situation already has GES. A mean of 0.29mg/l and a SD of 0.29mg/l for ammonia were used. The worse case future scenario was modelled first to verify if the required discharge quality, in order to meet the river target, could be achieved with the BAT.. The other scenarios were modelled if this was not achieved.. The target was not reached in any of the scenarios for ammonia as shown in Table 37 even when assuming GES upstream the discharge point.


Table 37: Permit values required to meet river targets assuming GES upstream

Scenario	Pollutant	Target	Mean	SD	95%ile
Present	Amm	0.6	0.3	0.31	0.88
2019/20	Amm	0.6	0.3	0.3	0.85
2030/31	Amm	0.6	0.3	0.3	0.86

Figure 23: Aardvark summary for BOD for PTHE0144.





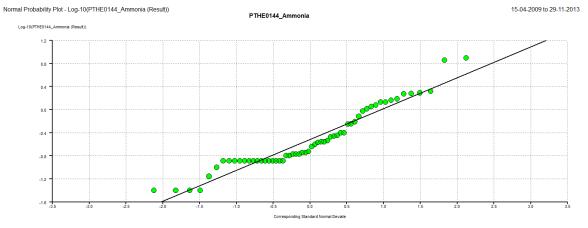
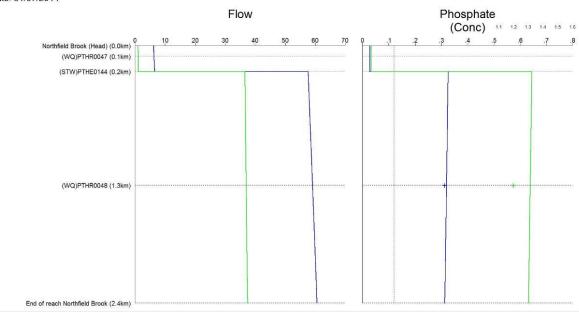
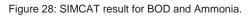


Figure 24: Aardvark summary for ammonia for PTHE0144.

Figure 25: Aardvark LogNormal plot for BOD for PTHE0144.



JBA consulting


Figure 27: SIMCAT result for flow and phosphate.

SIMCAT Date: 31/07/2014

FinalManualCalib

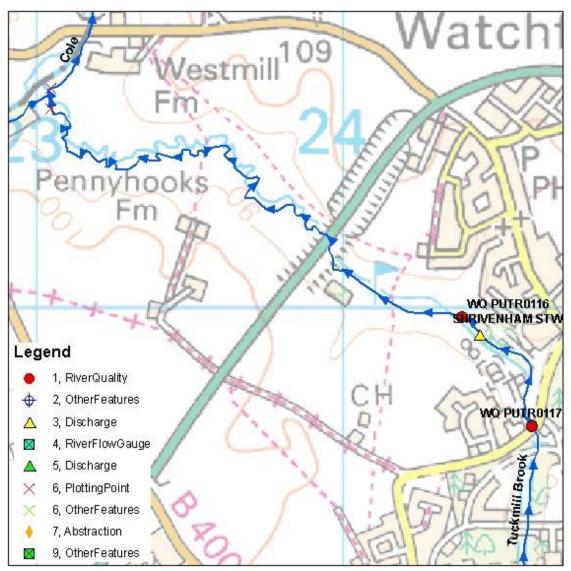
KEY: ____ Mean values ____ 90% values (95% flows) Quality targets + Observed values

SIMCAT Date: 31/07/2014

BOD (Conc) Ammonia (Conc) Northfield Brook (Head) (0.0km) 1 2 3 4 5 9 2 4 8 1 1.2 1.4 1.8 (WQ)PTHE0047 (0.1km) (STW)PTHE0144 (0.2km) (STW)PTHE0144 (0.2km) 1

FinalManualCalib

KEY: ____ Mean values ____ 90% values (95% flows) _____ Quality targets _+ Observed values


B.6.11 Shrivenham STW

Shrivenham STW discharges into the Tuckmill Brook as shown in Figure 29. The status of the receiving watercourse is summarised in the Table 38 below:

Table 38: Tuckmill Brook status.

	Overall	Ecological	Chemical	Ammonia	Phosphate	
Baseline status	Moderate	Moderate Not available		High	Moderate	
2013 status	Moderate	Moderate Not available		High	Poor	
Objective	Good Status by 2027	Good Status by 2027	Not available	NA	2015: Moderate (Disproportionatel y expensive (P1b))	

Figure 29: GIS SIMCAT map of Shrivenham discharge location.

©Crown copyright and database rights 2014. Vale of White Horse District Council 100019525 (2014).

© Environment Agency copyright and/or database right 2013. All rights reserved. Appendix B - Water quality assessment - FINAL Table 39 shows the input data and RQP results for Shrivenham. The works has permit values for BOD and ammonia (see Table 4) and currently it is operating within its permits. Future scenarios predict that the STW will be exceeding its permit for Ammonia by 2019/20 and for BOD by 2030/31. Upgrading of the works would therefore be required by 2019/20.

Param				Pres	sent day (2			2019/20			2030/31	
eter	Statistic	River	Source	STW	Source	RQP Result	STW	Source	RQP Result	STW	Source	RQP Result
	Mean	11.41	SIMCAT	1.77			2.06	Thames		1.97	Thames	
Flow (MI/d)	SD		calculated value just upstream	0.59	Thames Water	NA	NA 0.69	Water	NA	0.66	Water	NA
	5%ile	1.82	STW									
	Mean	1.39		3.4			4.5			4.8		
BOD	SD	0.65	U/s WQ point PUTR0117 from SIMCAT		Thames Water	2.73		Thames Water	3.22		Thames Water	3.32
(mg/l)	95%ile			6.5		2.15	8.5		0.22	9.1		0.02
	Target 90%ile	5	2013 WFD									
	Mean	0.11	LI/a WO naint	0.3			0.8			1		
Amm	SD	0.11	U/s WQ point PUTR0117 from SIMCAT		Thames Water	0.29		Thames Water	0.53		Thames Water	0.64
(mg/l)	95%ile			0.9		0.29	2.3		0.00	3.1		0.04
	Target 90%ile	0.6	2013 WFD									
	Mean	0.085	U/s WQ point PUTR0117	2.83	SIMCAT		2.83	SIMCAT		2.83	SIMCAT	
P (mg/l)	SD	0.039	from SIMCAT	1	values	0.65).65 1	values	0.72	1		0.7
	Target Mean	0.075	2013 WFD									

Table 39: input data and RQP results for Shrivenham STW.

The upstream WQ point is 0.41km from the discharge point and Table 40 below shows the statistics used in SIMCAT and those derived from the observed data provided:

Table 40: statistics used in SIMCAT and those derived from the observed data for WQ point PUTR0117.

				MCAT mod	del	Data 09-13				
WQ point	Distance	Pollutant	Mean	SD	Samples	Distribution	Mean	SD	Samples	Data period
PUTR0117	0.41	BOD	1.391	0.652	27	Normal				no data
PUTR0117	0.41	Amm	0.109	0.112	29	Log-Normal	0.061	0.045	10	13 only
PUTR0117	0.41	Р	0.085	0.039	29	Log-Normal	0.057	0.033	10	13 only

Due to the low number of samples for the period 09-13 the SIMCAT data were used. Because of the close distance to the discharge point the effect of the natural purification is negligible. The model presents a good calibration for all pollutants as shown in Figure 30 and Figure 31 and indicates a failure of the target for phosphate.

The RQP results confirm that the target for phosphate is not reached for the present-day situation and the future scenarios and also indicate that the watercourse will fail its target for

ammonia by 2030/31. There is a 18% and 22% deterioration for BOD for 2019/20 and 2030/31 respectively; 83% and 120% for ammonia for 2019/20 and 2030/31 respectively; 9% and 7% deterioration for phosphate for 2019/20 and 2030/31 respectively.

SIMCAT shows that phosphate is failing its target upstream of the STW. The RQP tool was used to calculate the discharge quality required in order to meet the river target using the 2030/31 scenario for ammonia and the present-day for P as input data (see Table 39). The results are shown in Table 41 below

Table 41: STW discharge quality required to meet WFD targets - Shrivenham STW

Pollutant	Target	Mean	SD	95%ile
Amm	0.6	0.96	1.08	2.95
Р	0.075	0.01	0.01	0.02

Since the river target could not be reached for P with BAT (for P this is a mean of 0.5mg/l, for ammonia a 95% ile of 1mg/l), using the actual condition for the upstream river quality values, the RQP function to calculate the required discharge quality in order to meet the river target was run assuming that the river upstream has GES for P. A mean of 0.075 and a SD of 0.025 for phosphate. The worst case future scenario was modelled first to verify if the required discharge quality, in order to meet the river target, could be achieved with the BAT. The other scenarios were modelled if this was not achieved. The target was not reached in any of the scenarios for P, even when assuming GES upstream the discharge point as shown in .

Table 42: Good quality upstream results

Scenario	Pollutant	Target	Mean	SD	95%ile
2019/20	Р	0.075	0.07	0.03	0.12
2030/31	Р	0.075	0.06	0.02	0.09
Present	Р	0.075	0.05	0.02	0.09

New permit values were calculated for the determinands that present a deterioration of more than 10% or a class deterioration. These were calculated using the present day concentration in the river plus a 10% deterioration as the river target or, if there was a class deterioration, the limit of the current class. Table 43 shows the results for BOD where the present day concentration + 10% deterioration was used because a class deterioration was not predicted and Ammonia where the "High" class boundary was used. Permit values can be achieved with BAT for BOD since this is a 95%ile of 5mg/l. For ammonia the permit value is a 95%ile of 1mg/l and since the result is in the 10% of the model tolerance / variability this can be considered achievable.

Table 43: 'No deterioration' permit values for Shrivenham STW

	Scenario with the	Present day + 10%	Permit values required to meet "no- deterioration"					
Parameter	strictest permit requirement	deterioration or class boundary target	Mean Quality	Standard Deviation	95th Percentile			
BOD	2030/31	3.00	4.1	1.89	7.71			
Ammonia	2030/31	0.30	0.31	0.35	0.96			
Phosphate	-	-	-	-	-			

Figure 30: SIMCAT result for flow and phosphate.

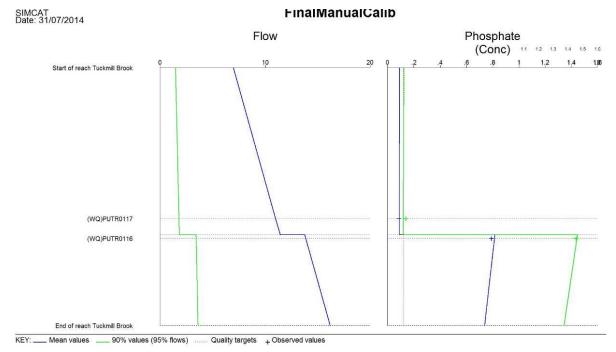
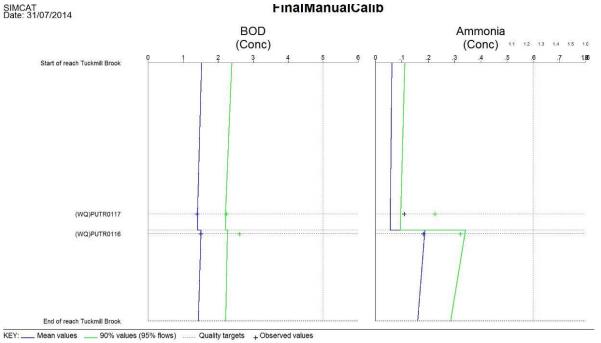



Figure 31: SIMCAT result for BOD and Ammonia.

SIMCAT Date: 31/07/2014

B.6.12 Stanford in the Vale STW


Stanford in the Vale STW discharges into the River Ock as shown in Figure 32.

The status of the receiving watercourse is summarised in Table 44 below:

Table 44: River Ock status.

	Overall	Ecological	Chemical	Ammonia	Phosphate
Baseline status	Moderate	Moderate	Not available	High	Moderate
2013 status	Moderate	Moderate	Not available	High	Moderate
Objective	Good Status by 2027	Good Status by 2027	Not available	NA	2015: Moderate (Disproporti onately expensive (P1a))

Figure 32: GIS SIMCAT map of Stanford in the Vale discharge location.

©Crown copyright and database rights 2014. Vale of White Horse District Council 100019525 (2014). © Environment Agency copyright and/or database right 2013. All rights reserved.

Appendix B - Water quality assessment - FINAL

Table 45 shows the input data and RQP results for Stanford in the Vale. The works has a permit for BOD only (see Table 4) and currently it is operating within its permit. Future scenarios predict that the STW will continue to operate within its permit.

Param				Pres	sent day (2	2013)		2019/20			2030/31	
eter	Statistic	River	Source	STW	Source	RQP Result	STW	Source	RQP Result	STW	Source	RQP Result
	Mean	15.64	SIMCAT	0.39			0.49	Thames		0.47	Thames	NA
Flow (MI/d)	SD		calculated value just upstream	0.13	3 Thames Water	NA	0.16	Water	NA	0.16	Water	
	5%ile	3.46	STW									
	Mean	1.14	LI/a WO naint	2.3			3.1			3.3		
BOD	SD	0.87	U/s WQ point POCR0019 from SIMCAT		Thames Water	2.14		Thames Water	2.17		Thames Water	2.17
(mg/l)	95%ile			3.6			4.8		2.17	5.2		
	Target 90%ile	5	2013 WFD									
	Mean	0.04	U/s WQ point	0.08			0.2			0.2	Thames Water	0.09
Amm	SD	0.037	POCR0019 from 08-13		Thames Water			Thames Water	0.08			
(mg/l)	95%ile		data	0.13		0.08	0.3		0.08	0.3		0.09
	Target 90%ile	0.6	2013 WFD									
	Mean	0.167	U/s WQ point POCR0019	4.91	SIMCAT		4.91	SIMCAT		4.91	SIMCAT	
P (mg/l)	SD	0.067	from SIMCAT	1.32	observed values 0	0.34	1.32	values	0.38	1.32	values	0.37
	Target Mean	0.081	2013 WFD									

Table 45: input data and RQP results for Stanford in the Vale STW.

The upstream WQ point is 0.2km from the discharge point and Table 46 below shows the statistics used in SIMCAT and those derived from the observed data provided:

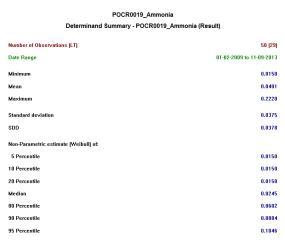
Table 46: statistics used in SIMCAT and those derived from the observed data for WQ point POCR0019.

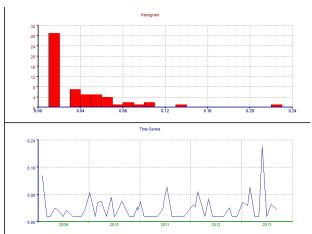
				SI	NCAT mod	el		ĺ	Data 09-13	
WQ point	Distance	Pollutant	Mean	SD	Samples	Distribution	Mean	SD	Samples	Data period
POCR0019	0.2	BOD	1.141	0.873	33	Log-Normal				no data
POCR0019	0.2	Amm	0.038	0.035	36	Log-Normal	0.04	0.037	58	08-13
POCR0019	0.2	Р	0.167	0.067	36	Log-Normal	0.1	0.038	26	08-10 and 13

Due to the low number of samples for the period 2009-13 the SIMCAT data were used for BOD and phosphate. The statistics from the data period 2009-13 which were used for ammonia (see Aardvark summary on Figure 33) were virtually identical to the values used in SIMCAT. The Aardvark analysis has shown no seasonality, trends or step changes and a good fit with the LogNormal plot as shown on Figure 34. Because of the close distance to the discharge point the effect of the natural purification is negligible.

The model presents a good calibration for all pollutants as shown on Figure 35 and Figure 36, and indicates a failure of the target for phosphate and for ammonia for a short length of reach downstream the discharge point.

The RQP results also predict that the watercourse fails its target for phosphate for the presentday situation and the future scenarios. There is a 1% deterioration for BOD for both scenarios; 13% deterioration for ammonia for 2030/31 scenario; 11% and 8% deterioration for phosphate for 2019/20 and 2030/31 respectively.


SIMCAT shows that phosphate fails its target upstream of the STW. The RQP tool was used to calculate the discharge quality for the future scenario including the contingency sites that would be required in order to meet the river targets for P, but reported that "the river quality target is not achievable without improving the upstream water quality".


In order to prevent a water quality deterioration at Stanford in the Vale for future scenarios, sewage treatment would have to be improved to meet standards for Ammonia and Phosphate. In order to meet the 'No deterioration' permit, the revised permit values shown in Table 47 must be met.

Parameter	Scenario with the	Present day 90 percentile	Permit values required to meet "no- deterioration"					
	strictest permit requirement	/ mean (the "no- deterioration " target)	Mean Quality	Standard Deviation	95th Percentile			
BOD	-	-	-	-	-			
Ammonia	30/31	0.08	0.15	0.05	0.24			
Phosphate	19/20	0.34	1.68	0.44	2.49			

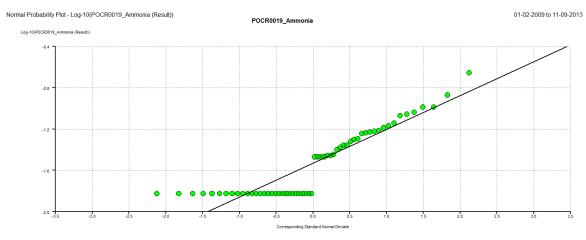
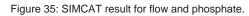

Table 47: 'No deterioration' permit values for Stanford in the Vale STW

Figure 33: Aardvark	summary for ammonia	for POCR0019.
---------------------	---------------------	---------------



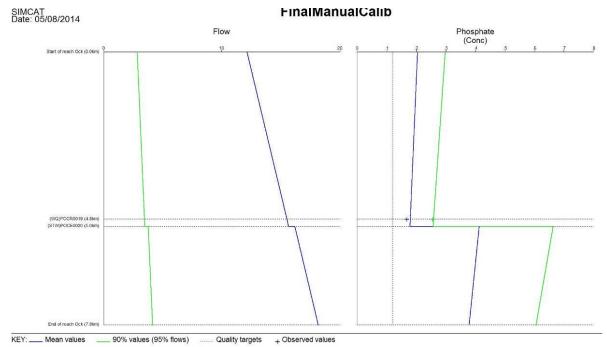
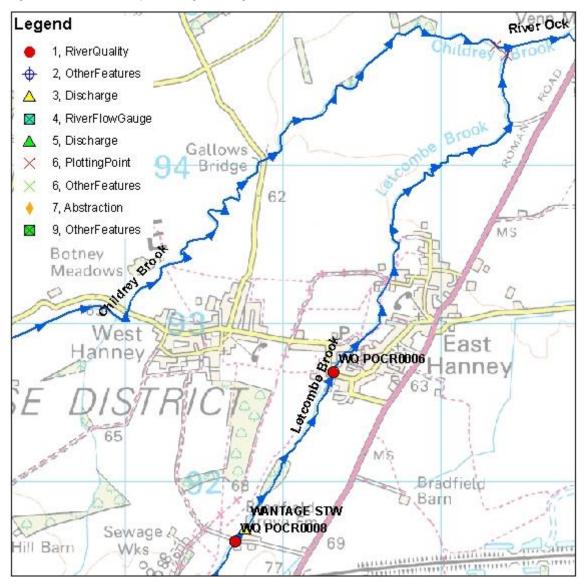


Figure 34: Aardvark LogNormal plot for ammonia for POCR0019.

Eliter descrote (2.0m)

Figure 36: SIMCAT result for BOD and Ammonia.

KEY: ____ Mean values _____ 90% values (95% flows) _____ Quality targets ____ Observed values


B.6.13 Wantage STW

Wantage STW discharges into the Letcombe Brook as shown in Figure 37.

The status of the receiving watercourse is summarised in the table below:

	Overall	Ecological	Chemical	Ammonia	Phosphate
Baseline status	Moderate	Moderate	Not available	High	Moderate
2013 status	Moderate	Moderate	Not available	High	Moderate
Objective	Good Status by 2027	Good Status by 2027	Not available	NA	2015: Moderate (Disproporti onately expensive (P1a))

Figure 37: GIS SIMCAT map of Wantage discharge location.

[©]Crown copyright and database rights 2014. Vale of White Horse District Council 100019525 (2014). © Environment Agency copyright and/or database right 2013. All rights reserved.

Table 48 shows the input data and RQP results for Wantage. The works has permit values for BOD and ammonia (see Table 4) and currently it is operating within its permits. Future scenarios predict that the STW will continue to operate within its permits, but will be close to its capacity for ammonia by the 2030/31 scenario.

Table 48: input data and RQP results for Wantage STW.

Param				Pres	sent day (2	2013)		2019/20			2030/31		
eter	Statistic	River	Source	STW	Source	RQP Result	STW	Source	RQP Result	STW	Source	RQP Result	
	Mean	38.61	SIMCAT	6.19			6.98	Thames		7.68	Thames		
Flow (MI/d)	SD		calculated value just upstream	2.06	Thames Water	NA	2.33	Water	NA	2.56	Water	NA	
	5%ile	5.54	STW										
	Mean	1		6			6.5			7.3			
BOD	SD	0.57	U/s WQ point POCR0008 from SIMCAT		Thames Water	3.57		Thames Water	3.95		Thames Water	4.53	
(mg/l)	95%ile			12			13		3.95	14.6			
	Target 90%ile	5	2013 WFD										
	Mean	0.02		U/s WQ point	0.7			1			1.6		
Amm	SD	0.01	POCR0008		Thames Water	0.37		Thames Water	0.57		Thames Water	0.96	
(mg/l)	95%ile			1.8		0.57	2.6		0.57	4.1		0.50	
	Target 90%ile	0.6	2013 WFD										
	Mean	0.35	U/s WQ point POCR0008	1.38	Thames		1.38	Thames		1.38	Thames		
P (mg/l)	SD	0.15	from SIMCAT	0.36 Water	0.58	0.36	Water	0.60	0.36	Water	0.61		
	Target Mean	0.08	2013 WFD										

The upstream WQ point is 0.1km from the discharge point and the Table 49 below shows the statistics used in SIMCAT and those derived from the observed data provided:

Table 49: statistics used in SIMCAT and those derived from the observed data for WQ point POCR0008

	SIMCAT model Data 09-13									
WQ point	Distance	Pollutant	Mean	SD	Samples	Distribution	Mean	SD	Samples	Data period
POCR0008	0.1	BOD	1.002	0.575	28	Log-Normal				no data
POCR0008	0.1	Amm	0.019	0.009	28	Log-Normal	0.025	0.02	9	2013
POCR0008	0.1	Р	0.053	0.024	28	Log-Normal	0.046	0.023	9	2013

Due to the low number of samples for the period 09-13 the SIMCAT data were used. Because of the close distance to the discharge point the effect of the natural purification is negligible. The model presents a good calibration for all pollutants as shown in Figure 38 and Figure 39 and indicates a failure of the target for phosphate.

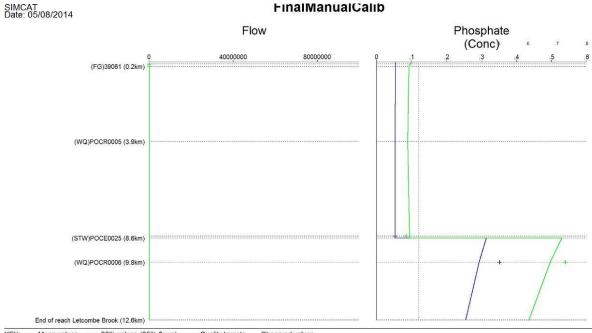
The RQP results also predict the watercourse to fail its target for phosphate for the present-day situation and the future scenarios and ammonia fails its target for the 2030/31 scenario. There is a 11% and 27% deterioration for BOD for 2019/20 and 2030/31 respectively; 54% and 159%

deterioration for ammonia for 2019/20 and 2030/31 respectively; 3% and 5% deterioration for phosphate for 2019/20 and 2030/31 respectively.

The RQP tool was used to calculate the required discharge guality in order to meet the river target using the 2030/31 scenario for ammonia (see Table 50)

Table 50: STW discharge quality required to meet WFD targets - Wantage STW

Pollutant	Target	Mean	SD	95%ile	
Amm	0.6	0.27	0.27	0.79	

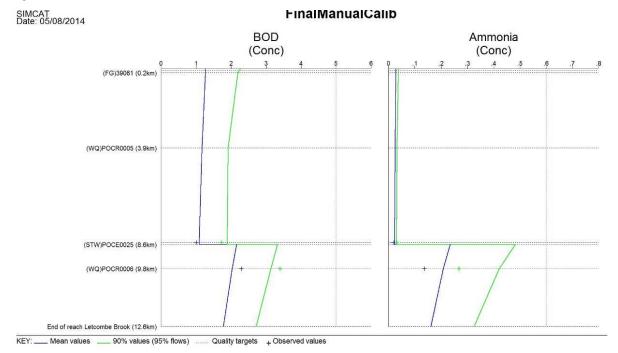

For phosphate the RQP tool reports that "the river quality target is not achievable without improving the upstream water quality".

In order to prevent a water quality deterioration at Wantage for future scenarios, sewage treatment would have to be improved to meet standards for Ammonia and Phosphate. In order to meet the 'No deterioration' permit, the revised permit values shown in Table 39 must be met.

Parameter	Scenario with the	Present day 90 percentile	Permit values required to meet "no- deterioration"					
	strictest permit requirement	(the "no- deterioration " target)	Mean Quality	Standard Deviation	95th Percentile			
BOD	-	-	-	-	-			
Ammonia	30/31	0.37	0.73	0.24	1.17			
Phosphate	30/31	0.85	1.25	0.36	1.89			

Table 51: 'No deterioration' permit values for Wantage STW

Figure 38: SIMCAT result for flow and phosphate.



SIMCAT Date: 05/08/2014

KEY: ____ Mean values ____ 90% values (95% flows) Quality targets + Observed values

Figure 39: SIMCAT result for BOD and Ammonia.

B.7 Climate change

The National Planning Policy Framework practice guidance² states that "addressing climate change is one of the core land use planning principles which the National Planning Policy Framework expects to underpin both plan-making and decision-taking. To be found sound, Local Plans will need to reflect this principle and enable the delivery of sustainable development in accordance with the policies in the National Planning Policy Framework."

Likewise the Environment Agency's Water Cycle Study Guidance states that the development of water infrastructure should contribute "to the shift to a low carbon economy."

The Thames RBMP Annex H includes an assessment of the evidence on climate change to 2050 and the potential impacts this will have on achieving WFD good ecological status. Key issues relevant to this water quality assessment are:

- higher summer temperatures leading to lower background levels of dissolved oxygen,
- reduced summer rainfall leading to lower mean summer flows, meaning that there will be reduced dilution of treated effluent, and
- requirements for higher standards of treatment (in particular for P removal) can lead to increased carbon emissions.

The EA's "Water Quality Planning: no deterioration and the Water Framework Directive" and "Horizontal guidance" make no mention of how to account for climate change in water quality planning. Various studies by UK Water Industry Research (UKWIR)^{3,4} and the Environment Agency⁵ do however provide some background to how to approach this issue. CEH's Future Flows and Groundwater Levels work provides an assessment at a number of gauges (including the Ock at Abingdon) as well as a methodology for how to apply climate change assessments to river flows at other sites⁶.

This assessment has not specifically modelled the impacts of climate change on the status and deterioration of the watercourses and it would be advisable to address this issue at a local level when considering permit changes to STWs. It is likely that this would require as a minimum consideration of changes to river water temperature and flows.

The RBMP encourages us to look for win-win" actions, and integrated and catchment-based approaches are encouraged. One example here could be catchment based land management and river restoration projects could be used to both reduce diffuse P inputs and to help maintain summer base flows in watercourses. The RBMP cautions that taking actions for specific pressures may be counter-productive. So for example the carbon costs of increased treatment standards need to be assessed against the environmental benefits they will achieve.

B.8 Phosphate

The Thames RBMP indicates that phosphates (along with diatoms, macrophytes, fish and invertebrates) is one of the main individual elements which the EA assesses as leading to good ecological status not being achieved, with only around 35% of water bodies achieving their good status target for phosphate. Phosphate has been assessed as a major cause of biological failures (e.g. diatoms and macrophytes). Recent research on the Thames basin⁷ has indicated that WFD targets can only be achieved by a combination of measures to reduce P both through agricultural management practices and removal at STWs. This paper found that a combined approach requiring 20% reduction in agricultural inputs and P removal at STWs to meet a

² Department of Communities and Local Government (2014) National Planning Policy Framework Practice Guidance: Climate Change.

³ UKWIR (2007) Climate Change, the Aquatic Environment and the Water Framework Directive. Ref: 07/CL/06/5

⁴ UKWIR (2005) Effects of Climate Change on River Water Quality. Ref: 05/CL/06/4

⁵ Environment Agency (2007) Preparing for climate change impacts on freshwater ecosystems (PRINCE). Ref SC030300/SR. Accessed on 01/09/2014 at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291081/scho0507bmoj-e-e.pdf

⁶ Accessed on 01/09/2014 at

http://www.ceh.ac.uk/sci_programmes/water/future%20flows/ffgwlsites.html#Background

⁷ Whitehead PG et al (2013) A cost-efectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system. Phil Trans R Soc A 371: 20120413. http://dx.doi.org/10.1098/rsta.2012.0413

discharge concentration of P of 0.3mgl⁻¹ total P would be the most cost-effective approach for the Thames basin. Notably however this study did not take into account the high carbon costs of treating wastewaters to this standard.

The RBMP aims to tack this via the following measures:

- Agriculture and rural land management. A range of approaches are in use including promotion of best-practice, partnership working pilots and Water Protection Zones (WPZs). One large-scale project underway in South Oxfordshire is the River of Life project on the River Thames⁸. Here the Earth Trust are restoring wetland features and habitat along 2km of river bank and floodplain. This type of restoration and the use of buffer zones have the potential to reduce P inputs to the watercourse; the Whitehead et al (2013) paper found these to be the most cost-effective measure but not on their own sufficient to tackle the P issue in the Thames basin.
- Legislative and regulatory measures.
- Water industry measures, in particular P removal at STWs where the economic and carbon costs can be justified. The water industry is also increasingly seeking to play a role in catchment-based approaches with the aim of achieving WFD P targets at a lower economic and carbon cost. Thames Water are undertaking a catchment sensitive farming trial to address P⁹.

B.9 Summary and conclusions

B.9.14 Method

The increased discharge of effluent due to an increase in the population served by a Sewage Treatment Works (STW) may impact on the quality of the receiving water. The Water Framework Directive (WFD) does not allow a watercourse to deteriorate from its current class (either water body or element class).

It is Environment Agency policy to model the impact of increasing effluent volumes on the receiving watercourse. Where the scale of development is such that a deterioration is predicted, a new permit may be required for the STW to improve the quality of the final effluent, so that the extra pollution load will not result in a deterioration in the water quality of the watercourse. This is known as a "no deterioration" or "load standstill".

During the preparation of the phase I Water Cycle Study (WCS) the Environment Agency advised that it would be necessary to undertake an assessment of the water quality impact of development in the 11 STW catchments which will receive the majority of additional flows in the Vale of White Horse District (12 outfalls as Abingdon has 2 outfalls to different watercourses).

The assessment was undertaken using the EA's River Quality Planning (RQP) tool which enables a Monte-Carlo analysis to be undertaken at a single point of discharge to a watercourse. This was supplemented by results from their SIMCAT model of the Thames River Basin District (RBD).

-RQP models were required to be set up and run using the present-day, 2019/20 and 2030/31 growth scenario effluent flows to assess the impact of the increased contaminant loads on the receiving watercourses due to the extra wastewater flows.

Addressing existing diffuse pollution is beyond the remit of the WCS, and therefore the analysis was undertaken following the assumption that the upstream diffuse sources of pollution had been addressed (i.e. 'good status' achieved upstream). This was achieved by setting the upstream quality at the level of 'good status' in the model. This assumption was used when good status could not be achieved downstream of the works with current upstream water quality even when BAT standards are applied to the works.

⁸ http://www.earthtrust.org.uk/Our-work/waterandwetlands/RiverofLife.aspx

⁹ Thames Water (2014) Business Plan 2015-2020 Part A - Summary.

Appendix B - Water quality assessment - FINAL

B.9.15 Results

Table 52 summarises the modelling results for assessing the 'Good status' and 'No > 10% deterioration' targets for each STW using their actual performance for the current situation and the future scenarios. The colour code used for the 'Good status' target is green for achieving it and red for failing it. For the 'No > 10% deterioration' target the table shows green for no deterioration, amber for <=10% deterioration and red for >10% deterioration. The actual upstream river quality input data were used for the assessment.

Table 52: Modelling results summary for assessing the 'Good status' the actual situation and 'No >10% deter	'ioration'
targets. The actual upstream river quality input data were used for the assessment.	

Watercourse (STW	Scenario	Failing 'O	Failing 'Good status' target?			Failing 'No > 10% deterioration' target?		
discharging into it)	Scenario	BOD	Amm	Р	BOD	Amm	Р	
		ta	rget achieve	ed	n	o deteriorati	on	
			NA		dete	erioration ≤ [·]	10%	
		targ	et not achie	ved	dete	erioration >	10%	
	Actual	No	No	Yes	NA	NA	NA	
River Thames (Abingdon Lagoon)	19/20	No	No	Yes	No	No	No	
(******92227)	30/31	No	No	Yes	No	No	No	
Odhay Hill Ditches	Actual	Yes	Yes	Yes	NA	NA	NA	
(Abingdon New	19/20	Yes	Yes	Yes	2%	10%	No	
Stream)	30/31	Yes	Yes	Yes	2%	12%	-2%	
	Actual	No	No	Yes	NA	NA	NA	
Marcham Brook (Appleton)	19/20	No	No	Yes	15%	48%	4%	
(, (pploton)	30/31	No	No	Yes	9%	48%	1%	
	Actual	No	Yes	Yes	NA	NA	NA	
Moor Ditch (Didcot)	19/21	No	Yes	Yes	8%	65%	3%	
	30/32	No	Yes	Yes	22%	212%	5%	
	Actual	No	No	Yes	NA	NA	NA	
Ginge brook (Drayton)	19/21	No	Yes	Yes	9%	66%	13%	
(Diayton)	30/32	No	No	Yes	6%	55%	4%	
	Actual	Yes	Yes	Yes	NA	NA	NA	
Faringdon Brook (Faringdon)	19/21	Yes	Yes	Yes	26%	80%	6%	
(Failiguon)	30/32	Yes	Yes	Yes	21%	85%	3%	
	Actual	No	Yes	Yes	NA	NA	NA	
River Ock (Kingston Bagpuize)	19/22	No	Yes	Yes	11%	40%	3%	
Dagpuize)	30/33	No	Yes	Yes	10%	52%	1%	
	Actual	Yes	Yes	Yes	NA	NA	NA	
Northfield Brook (Oxford)	19/22	Yes	Yes	Yes	No	8%	No	
(Oxioid)	30/33	Yes	Yes	Yes	No	7%	-1%	
	Actual	No	No	Yes	NA	NA	NA	
Tuckmill Brook (Shrivenham)	19/22	No	No	Yes	18%	83%	9%	
(Onivernant)	30/33	No	Yes	Yes	22%	120%	7%	
River Ock	Actual	No	No	Yes	NA	NA	NA	
(Standford in the	19/23	No	No	Yes	1%	13%	11%	
Vale)	30/34	No	No	Yes	1%	13%	8%	
Letcome Brook	Actual	No	No	Yes	NA	NA	NA	

Watercourse (STW	Scenario	Failing 'C	Good status	s' target?	Failing 'No > 10% deterioration' target?		
discharging into it)	Scenario	BOD	Amm	Р	BOD	Amm	Р
		target achieved			n	o deteriorati	on
			NA			erioration ≤	10%
		targ	target not achieved			rioration >	10%
(Wantage)	19/23	No	No	Yes	11%	54%	3%
	30/34	No	No	Yes	27%	159%	5%

Table 53 summarises the modelling results for assessing if 'good status' can be achieved. The new permits calculated were compared against BAT. If these were \geq BAT values then they are defined as achievable.

The EA advised that the following permit values are achievable using Best Available Technology (BAT):

- BOD (95%ile) = 5mg/l
- Ammonia (95%ile) = 1mg/l
- Phosphate (mean) = 0.5mg/l

This does not take in consideration if it is feasible to upgrade each existing STW to such technology due considering the variable and constrains that this may involve: cost, timing, space, carbon cost etc. Annex A reports Thames Water's assessment of achievable permit values based on the type and size of each treatment works.

Table 53: Modelling results for assessing if 'good status' can be achived using BAT.

Watercourse (STW discharging into it)	Pollutant	Could the development prevent the water body from reaching GES?. NB: the actual upstream river water quality situation was used for the modelling calculation reported in this table.
		Passes
		Fails: target is achievable using BAT
		Fails: target is not achievable using BAT or withouth improving water quality upstream
	BOD	GES is reached for BOD
River Thames	Ammonia	GES is reached for ammonia
(Abingdon Lagoon)	Р	GES for P cannot be achieved without improving the upstream quality of the river
	BOD	GES can be achieved for BOD with improvement to the work using BAT
Odhay Hill Ditches (Abingdon New Stream)	Ammonia	GES cannot be achieved for ammonia with improvement to the work using BAT
	Р	GES cannot be achieved for P with improvement to the work using BAT
	BOD	GES is reached for BOD
Marcham Brook	Ammonia	GES is reached for ammonia
(Appleton)	Р	GES for P cannot be achieved without improving the upstream quality of the river
Moor Ditch (Didcot)	BOD	GES is reached for BOD

Appendix B - Water quality assessment - FINAL

Watercourse (STW discharging into it)	Pollutant	Could the development prevent the water body from reaching GES?. NB: the actual upstream river water quality situation was used for the modelling calculation reported in this table.
		Passes
		Fails: target is achievable using BAT
		Fails: target is not achievable using BAT or withouth improving water quality upstream
	Ammonia	GES can be achieved for ammonia with improvement to the work using BAT
	Р	GES cannot be achieved for P with improvement to the work using BAT
	BOD	GES is reached for BOD
Ginge brook (Drayton)	Ammonia	GES can be achieved for ammonia with improvement to the work using BAT
	Р	GES can be achieved for P with improvement to the work using BAT. The 95%ile requested is within the 10% model tolerance/variability
Faringdon Brook (Faringdon)	BOD	GES can be achieved for BOD with improvement to the work using BAT
	Ammonia	GES can be achieved for ammonia with improvement to the work using BAT
	Р	GES for P cannot be achieved without improving the upstream quality of the river
River Ock (Kingston	BOD	
Bagpuize without contingencies sites)	Ammonia	No calculation was done for this scenario
	Р	
	BOD	
		GES is reached for BOD
River Ock (Kingston Bagpuize)	Ammonia	GES can be achieved for ammonia with improvement to the work using BAT
	Р	GES for P cannot be achieved without improving the upstream quality of the river
	BOD	GES can be achieved for BOD with improvement to the work using BAT
Northfield Brook (Oxford)	Ammonia	GES cannot be achieved for ammonia with improvement to the work using BAT
	Р	GES cannot be achieved for P with improvement to the work using BAT
	BOD	GES is reached for BOD
Tuckmill Brook (Shrivenham)	Ammonia	GES can be achieved for ammonia with improvement to the work using BAT
	Р	GES cannot be achieved for P with improvement to the work using BAT
River Ock (Standford	BOD	

Appendix B - Water quality assessment - FINAL

Watercourse (STW discharging into it)	Pollutant	Could the development prevent the water body from reaching GES?. NB: the actual upstream river water quality situation was used for the modelling calculation reported in this table.
		Passes
		Fails: target is achievable using BAT
		Fails: target is not achievable using BAT or withouth improving water quality upstream
in the Vale)	Ammonia	GES is reached for ammonia
	Р	GES for P cannot be achieved without improving the upstream quality of the river
	BOD	GES is reached for BOD
Letcome Brook (Wantage)	Ammonia	GES cannot be achieved for ammonia with improvement to the work using BAT
	Р	GES for P cannot be achieved without improving the upstream quality of the river

B.9.16 Assessment for Appleton, Didcot, Oxford and Shrivenham STWs assuming GES upstream of the discharge point and applying Best Available Technology (BAT) to the STWs.

Following the presentation of the final water quality assessment report (v1.3), the EA requested further analysis and information for Appleton, Didcot, Oxford and Shrivenham STWs assuming that the river upstream of the discharge point has achieved GES and the pollution problem upstream of the work has been addressed. The reason of this is to measure the actual impact of the discharge effluent on the receiving watercourse. The aspects covered were the following:

- will the STW remain within its existing permit?,
- will any of the determinands experience a 10% deterioration and this is / is not achievable using the BAT;
- will any of the determinands experience a class deterioration and this is / is not achievable using the BAT;
- will any of the determinands experience a failure in reaching good status and this is / is not achievable using the BAT.

The EA advised that the following permit values are achievable using Best Available Technology (BAT), and that these values should be used for modelling all STWs potential capacity irrespective of the existing treatment technology and size of the works:

- BOD (95%ile) = 5mg/l
- Ammonia (95%ile) = 1mg/l
- Phosphate (mean) = 0.5mg/l

This does not take in consideration if it is feasible to upgrade each existing STW to such technology due considering the variable and constrains that this may involve: cost, timing, space, carbon cost etc. Annex A reports Thames Water's assessment of achievable permit values based on the type and size of each treatment works.

Table 54 shows a summary of the conclusions using BAT whilst Table 55 reports information on the runs and the model results used to compare against BAT.

Table 54: Summary of results assuming BAT is applied

Watercourse (WwTW discharging into it)	DWF Permit Compliant	Pollutant	Could the development cause a greater than 10% deterioration in WQ?	Could the development cause a deterioration in WFD class of any element?	Could the development prevent the water body from reaching GES?		
			Passes				
				sing BAT or permit ca			
		Fails: ta	rget is not achievable	using BAT or permit c	apacity is exceeded.		
			10% deterioration is predicted for BOD. Upgrade to the WwTW is needed and it is achievable with the best technology available	No class deterioration is predicted for BOD. No WwTW upgrade is required	Good status is reached for BOD		
Marcham Brook (Appleton)	Brook	Amm	10% deterioration is predicted for Amm. Upgrade to the WwTW is needed and it is achievable with the best technology available	Class deterioration is predicted for Amm. Upgrade to the WwTW is needed and it is achievable with the best technology available	Good status is reached for Amm		
		р	Predicted deterioration is less than 10% for P. No WwTW upgrade is required	No class deterioration is predicted for P. No WwTW upgrade is required	Good status is not reached for P. Upgrade to the WwTW is needed but it is not achievable with BAT also assuming GES upstream.		
Moor Ditch	Moor Ditch (Didcot) No DWF permit exceedance is predicted	BOD	10% deterioration is predicted for BOD. Upgrade to the WwTW is needed and it is achievable with the best technology available	Class deterioration is predicted for BOD. Upgrade to the WwTW is needed and it is achievable with the best technology available	Good status is reached for BOD		
		Amm	10% deterioration is predicted for Amm. Upgrade to the WwTW is needed and it is achievable with the best technology available	Class deterioration is predicted for Amm. Upgrade to the WwTW is needed and it is achievable with the best technology available	Good status is not reached for Amm. Upgrade to the WwTW is needed and it is achievable with BAT for Amm also in the current upstream condition.		

Watercourse (WwTW discharging into it)	DWF Permit Compliant	Pollutant	Could the development cause a greater than 10% deterioration in WQ?	Could the development cause a deterioration in WFD class of any element?	Could the development prevent the water body from reaching GES?
			I	Passes	I
		Fails:	target is achievable u	sing BAT or permit ca	pacity is reached.
		Fails: ta	rget is not achievable	using BAT or permit c	apacity is exceeded.
		р	Predicted deterioration is less than 10% for P. No WwTW upgrade is required	No class deterioration is predicted for P. No WwTW upgrade is required	Good status is not reached for P. Upgrade to the WwTW is needed but it is not achievable with BAT for P also assuming GES upstream.
			Predicted deterioration is less than 10% for BOD. No WwTW upgrade is required	No class deterioration is predicted for BOD. No WwTW upgrade is required	Good status is not reached for BOD. Upgrade to the WwTW is needed and it is achievable with BAT for BOD also in the current situation.
Northfield Brook (Oxford)	Brook predicted to	Amm	Predicted deterioration is less than 10%. No WwTW upgrade is required	No class deterioration is predicted. No WwTW upgrade is required	Good status is not reached for Amm. Upgrade to the WwTW is needed but it is not achievable with BAT also assuming GES upstream.
		р	Predicted deterioration is less than 10% for P. No WwTW upgrade is required	No class deterioration is predicted for P. No WwTW upgrade is required	Good status is not reached for P. Upgrade to the WwTW is needed but it is not achievable with BAT for P (P has GES in the actual situation).
Tuckmill Brook (Shrivenham)	No DWF permit exceedance is predicted	BOD	10% deterioration is predicted for BOD. Upgrade to the WwTW is needed and it is achievable with the BAT	No class deterioration is predicted for BOD. No WwTW upgrade is required	Good status is reached for BOD

JBA consulting

Watercourse (WwTW discharging into it)	DWF Permit Compliant	Pollutant	Could the development cause a greater than 10% deterioration in WQ?	Could the development cause a deterioration in WFD class of any element?	Could the development prevent the water body from reaching GES?		
				Passes			
		Fails:	target is achievable u	sing BAT or permit ca	pacity is reached.		
		Fails: ta	Fails: target is not achievable using BAT or permit capacity is exceeded.				
		Amm	10% deterioration is predicted for Amm. Upgrade to the WwTW is needed and it is achievable with the BAT. The 95%ile requested is within the 10% model tolerance/variability	Class deterioration is predicted for Amm. Upgrade to the WwTW is needed and it is achievable with BAT. The 95%ile requested is within the 10% model tolerance/variability	Good status is reached for Amm		
		Ρ	Predicted deterioration is less than 10% for P. No WwTW upgrade is required	No class deterioration is predicted for P. No WwTW upgrade is required	Good status is not reached for P. Upgrade to the WwTW is needed but it is not achievable with BAT also assuming GES upstream.		

The results in Table 55 were highlighted in green if the result is => than the BAT value, amber if it is in the 10% of the BAT value and red if it is < than the BAT value. Further explanation of column headers are:

- Scenario considered: specifies the discharge flow and quality scenario data used as input in the RQP run;
- Run to assess: specifies if the RQP run is to assess the no + 10% deterioration / class deterioration or the GES target;
- Upstream river condition used: specifies if the upstream river condition used for the run is the actual situation or if GES was assumed. The latter is indicated by the GES target for the river;
- Present day +10% deterioration or class boundary target: scecifies the target used for the no deterioration run;
- Discharge values required to meet the target: these are the RQP tool output representing the discharge value required to meet thespecific target. For BOD and ammonia the value to comper with BAT is the 95% ile whilst for P is the mean.

Table 55: Summary of the model results used to compare against BAT

stw	STW Parameter Scenario Run to considered assess:		GES target assumed	Present day + 10% deterioration or	Discharge values required to meet target		
		considered	assess:	upstream	class boundary target	Mean	SD

JBA consulting

STW	STW Parameter		Run to assess:	GES target assumed	Present day + 10% deterioration or class boundary	Discharge values required to meet target		
		considered	assess.	upstream	target	Mean	SD	95%ile
	BOD	2019/20	no deterioration	Actual situation	2.84	6.83	2.19	10.88
Appleton	Ammonia	2019/20	no deterioration	Actual situation	0.30	0.62	0.71	1.93
	Phosphate	Present	GES	GES = 0.084		0.1	0.03	0.15
	BOD	2030/31	no deterioration	Actual situation	3.92	3.42	1.18	5.61
Didcot	Ammonia	2030/31	no deterioration	Actual situation	1.02	0.72	1.58	2.89
	Phosphate	Present	GES	GES = 0.086		0.08	0.07	0.22
	BOD	Present	GES	Actual situation		3.43	1.28	5.83
Oxford	Ammonia	2030/31	GES	GES = 0.6		0.3	0.3	0.86
	Phosphate	2030/31	GES	GES = 0.08		0.08	0.04	0.16
	BOD	2030/31	no deterioration	Actual situation	3.00	4.1	1.89	7.71
Shrivenham	Ammonia	2030/31	no deterioration	Actual situation	0.30	0.31	0.35	0.96
Sinivernian	Ammonia	2030/31	GES	Actual situation		0.96	1.08	2.95
	Phosphate	Present	GES	GES = 0.075		0.05	0.02	0.09

B.9.17 Conclusions

There are numerous failures of WFD standards throughout the study reaches, with particular concerns over meeting targets for Phosphate. In summary:

- At all the STW outfalls the watercourse are predicted to fail their phosphate targets for the present-day situation, and at Abingdon Lagoon, Appleton, Farington, Kingston Bagpiuze, Stanford in the Vale and Wantage the P load from the upstream catchment is such that the P target for the watercourse could not be achieved by increased treatment at the works on its own. For Appleton, Didcot, and Shrivenam the river target cannot be achieved with BAT even assuming GES upstream of the work (Oxford has GES in the actual situation). This is indicative of a wider issue with P in the Thames basin and as such this has to be addressed at a catchment level.
- At six STW outfalls the watercourses are predicted to fail their ammonia target for the present-day situation and other two will fail it for future scenarios.
- At three STW outfalls the watercourse are predicted to fail their BOD targets for the present-day situation and another will fail for future scenarios.

- At Abingdon New Stream, Faringdon and Oxford STWs the watercourses are predicted to fail its targets for all pollutants for the present scenarios.
- The analysis reported here cannot comment conclusively on the apportionment of pollutant loads between point and diffuse sources, but in many cases the introduction of additional loads frequently results in significant deterioration (>10%). Only the Thames at Abingdon STW (Lagoon Stream) outfall the watercourse is predicted to not be at risk from significant deterioration in either of the future scenarios.

The implications for achieving the proposed growth within the Vale of White Horse are that:

- Ignoring phosphate, Abingdon STW's Lagoon Stream is the only STW were in the District where it is predicted that the watercourse will meet good status (for sanitary determinands) and where significant deterioration is not predicted within either of the future scenarios. Therefore development at Abingdon could be achieved without significant investment at the STW.
- Ignoring phosphate, at Appleton, Stanford in the Vale and Wantage, the receiving watercourses are predicted to meet their targets for sanitary determinands, however all are predicted to experience significant deterioration and therefore some upgrading of the STW will be required to prevent environmental deterioration.
- Ignoring phosphate, of the remaining STWs (Abingdon (New Stream), Didcot, Drayton, Faringdon, Kingston Bagpuize and Shrivenham), the watercourses are predicted to fail their targets and significant deterioration is also predicted in the future scenarios. Again, upgrading of these STWs will be required to ensure that the receiving watercourses can meet their targets and are not subject to significant deterioration.
- The assessments done at Appleton, Didcot, Oxford and Shrivenham uning BAT show that if this can allow to achieve the 'no more than 10% deterioration' and the 'no class deterioration' targets, it does not allow to achieve GES target even assuming GES ustream of the works.
- Phosphate is an issue that will need to be addressed across the Thames River basin. This is likely to require a combination of further P removal at STWs along with agricultural practices (e.g. reductions in P application) and catchment-sensitive farming including riparian buffer zones.
- More detailed studies should consider accounting for the effects of climate change on the capacity of the receiving waters to receive wastewater effluents.
- In order to enable the watercoursse to achieve "Good" status at Appleton, Didcot, Oxford and Shrivenham, sewage treatment would have to be improved to meet standards for sanitary determinands which are higher than currently considered to be possible using Best Available Technologies. Meeting such targets could require investment in non-standard technologies which would significantly raise the costs of treatment. Therefore the ability to treat wastewater arising from Appleton, Didcot, Oxford and Shrivenham may represent a constraint to growth. Alternative solutions, for example transferring flows to another treatment works or transferring effluent to an outfall further downstream where dilution will be greater may be feasible in some cases although this hasn't been assessed within the scope of this study.
- A predicted WFD class failure or deterioration by 2020/21 means that the works would require upgrade during AMP6. Therefore if no upgrade is scheduled during AMP6 there could be timing issues which would require either additional funding or phasing of development after 2020/21.
- A predicted WFD class failure or deterioration between 2021 and 2030/31 could be addressed in AMP7 or 8 and so would not require phasing of development.

Annex A: Technical Feasibility of WwTW Improvements

This study has applied Best Available Technology (BAT) values for BOD, Ammonia and Phosphase as advised by the Environment Agency. Alternative values based on the type of works and population served were provided by Thames Water: whilst these were not used for this analysis, they provide a useful guide for understanding the potential scale of upgrading that might be required for a works to meet more stringent permit conditions up to the current limits of BAT.

Table 56: Works Size Ranges for Ammonia Permits

Population Equivalent Range	Ammonia Permit (95-percentile mg/l)	Process Selection
		Percolating filters – single filtration
	No permit	Submerged aerated filters
		RBCs – where existing
		Percolating filters – single filtration
	>= 4	Submerged aerated filters
		RBCs (where existing)
< 5,000		Percolating filters – double filtration
< 5,000		Percolating filters & nSAF
	2 – 7	SAF & nSAF
		RBCs (where existing) & nSAF
		Crude sewage activated sludge (> 3,500 PE)
		Settled sewage activated sludge (> 3,500 PE)
	< 2	Crude sewage activated sludge
	< Z	Settled sewage activated sludge
		Percolating filters – single filtration
	>= 4	SAF - as side stream for < 5,000 PE
	>= 4	Crude sewage activated sludge (< 25,000 PE)
5,000 – 50,000		Settled sewage activated sludge
5,000 - 50,000		Percolating filters – double filtration
	2-7	Percolating filters & nSAF
	2-1	Crude sewage activated sludge (< 25,000 PE)
		Settled sewage activated sludge
> 50,001	All permits	Settled sewage activated sludge

Population Equivalent Range	95-percentile Solids/ BOD	Process	Suspended Solids Removal
	10 / 7	Reed Beds	70%
< 5,000	15 / 10	Land Treatment Area	50%
	10 / 7	Continuous Flow Sand Filters	65%
	13 / 8	Disc Filters	60%
	10 / 7	Reed Beds	70%
5 000 50 000	10 / 7	Continuous Flow Sand Filters	65%
5,000 - 50,000	13 / 8	Disc Filters	60%
	8/6	Rapid Gravity Sand Filter	65%
> 50,000	13/8	Disc Filters	60%
	8/6	Rapid Gravity Sand Filter	65%

Table 57: Process Selection Criteria for BOD Permits

Table 58: Process types by treatment works

Outfall	STW Process
Abingdon (New outfall)	Percolating Filter
Abingdon (Lagoon)	Percolating Filter
Appleton	Percolating Filter
Didcot	Activated Sludge Plant
Drayton	Unknown
Faringdon	Filters
Kingston Bagpuize	Rotating Biological Contactor
Oxford	Activated Sludge
Shrivenham	Aeration
Stanford in the Vale	Unknown
Wantage	Sludge

C Environment Agency response to the water quality assessment

This page is intentionally blank.

Mr Giovanni Sindoni 8a Castle Street Wallingford Oxfordshire OX10 8DL UK Our ref: WA/2006/000281/OR-26/PO1

Date: 07 May 2015

Updated Water Quality Assessment

Dear Giovanni,

Further to your e-mail dated 31 March 2015, containing the revised Water Quality Assessment (WQA), and the meeting held on 16 March 2015 we are now in a position to provide our formal position.

We have reviewed the Water Quality Assessment (ref 2013s7594 - VoWH WCS water quality assessment - Appendix v1.7) and we are pleased to see the changes advised in our letter dated 24 February (ref WA/2006/000281/OR-21/IS1) have been made and incorporated into the Water Quality Assessment.

The WQA highlights the potential risk posed to water from the planned allocated development within the Local Plan. Based on the information within the WQA it is determined that, when taking into account Best Available Technology (BAT), infrastructure upgrades can ensure there is no Water Framework Directive (WFD) class boundary deterioration, in accordance with the WFD objectives.

In addition the WQA concludes that it is not possible to reach Good Ecological Status (GES) for the waterbodies receiving discharges from Appleton (phosphate), Didcot (phosphate), Oxford (phosphate and ammonia) and Shrivenham (phosphate) sewage treatment works (STWs).

As part of the River Basin Management Plan (RBMP) we have recently undertaken assessments of what solutions would be required, in the present time, at STWs in order to get to GES in relation to Phosphate. Unfortunately we were unable to provide this information to meet the timescales of the WQA.

Our assessment for Phosphate has indicated that for Appleton, Didcot, Oxford and Shrivenham the solutions are currently deemed to be technically infeasible. Fundamentally this concludes that the planned allocated growth within the Local Plan

Cont/d..

has no, or very little, bearing on the ability of the waterbodies getting to GES in relation to Phosphate.

It is pertinent to note that trials of what is technically feasible in relation to Phosphate are being undertaken, the results of which will be available in March 2017. The results will be reviewed in line with water company investigations and the overarching objectives of the WFD.

We note that from the results of the WQA, Oxford STW would prevent the receiving waterbody from reaching GES when taking into account BAT in relation to Phosphate and Ammonia. Whilst the WQA is considered accurate and appropriate as evidence to support the Local Plan, we would also consider the conclusions to be conservative. The WQA has concluded that, based on infrastructure upgrades alone, the additional development would prevent it from reaching GES.

However, as part of the RBMP we have put forward an upgrade to Oxford STW (to tighten Ammonia limits to 1mg/l) which has been deemed technically feasible. This is primarily due to fact that the RBMP upgrades have combined infrastructure upgrades and habitat restoration. It is thought that with the infrastructure upgrades and additional habitat restoration any detrimental impact could be mitigated against to protect the waterbody against any potential impacts related to the works not achieving the 1mg/l limit. Therefore we are of the opinion that when taking into account the conservative WQA results, and the infrastructure upgrades (with the additional habitat restoration put forward within the RBMP) the growth would not prevent the receiving waterbody from reaching GES, in line with the overarching objectives of the WFD.

Conclusions

We consider that the revised WQA is now considered appropriate and accurate for use within the WCS. Its conclusions highlight the potential risks posed to water quality deterioration from significant levels of growth. Notwithstanding this there are no limiting factors for growth based on the levels indicated within the Local Plan, subject to the relevant mitigation measures and infrastructure upgrades indicated within the WQA being delivered.

The conclusions of the WQA will also inform the evidence required to support developing schemes for the National Environment Programme.

We look forward to reviewing the final collated WCS, if you have any further questions please don't hesitate to contact me.

Yours sincerely

Mr Ashley Maltman Planning Advisor

Direct dial 01491 828338 Direct e-mail planning-wallingford@environment-agency.gov.uk

D Appendix: Conclusions to questions raised by Environment Agency

Table D-1 summarises the conclusions to the questions raised by the Environment Agency in the original project scope.

Question	Conclusion
Water Resources and Water Supply	
Is there capacity in existing licences for development?	There is scope for abstraction from the Cole and the Ock but there is no additional water (surface or groundwater) available for licensing in the majority of the District.
Will existing licences remain valid?	Due to abstraction, several water bodies in the district have fallen below the Ecological Flow Indicator (EFI) which may lead the EA to change or revoke some abstraction licenses. This underlines the need to reduce abstraction by using more efficient management practices.
Can we reduce abstraction by better management practices?	Improving water efficiency is recommended by the Abstraction Licensing Strategies and Thames Waters' Water Resource Management Plan. However, the removal of Code for Sustainable Homes and the proposed amendment to only allow LPAs to impose a lower limit of 110l/person/day in water stressed areas may limit the District's ability to manage water demand through the planning system. Likewise uncertainties over delivery of SuDS may inhibit uptake of measures such as rainwater harvesting.
If new major infrastructure (reservoirs, water treatment works, boreholes) are needed, can they be provided in time, can they be funded, and are they sustainable?	Both Thames Water and the EA concluded in their Position Statement that they are confident that through their annual Water Resources review process and deploying any required mitigation measures identified in the Water Resources Position Statement, Thames Water will be able maintain the security of supply in its SWOX Water Resource Zone in the next 5 years to 2020. Beyond this period, the next review of the Water Resources Management Plan, due to be published in draft form in 2018, will assess and programme future water resource requirements reflecting the revised housing growth projections
Wastewater Collection and Treatment	
Is there volumetric capacity in existing effluent discharge consent for growth?	This has been assessed at each of the WwTWs planned to receive additional flows. Drayton, Faringdon, Kingston Bagpuize, Oxford and Shrivenham WwTWs are particular constrained as upgrades would be required by 2021 to enable them to accommodate expected growth without failing their consents.
Will discharge consent be valid to meet future standard (e.g. WFD)? Vale of White Horse District Council - Water Cycle Study F	With the exception of Abingdon WwTW's Lagoon Stream discharge to the River Thames, all of the WwTWs receiving significant additional flows due to growth would require a tightening of their treatment consents to either meet Water Framework Directive Good Status or to prevent a deterioration of greater than 10%. At several WwTWs, the revised consents required would be tighter than could be achieved using the existing treatment processes and therefore may require additional more

Question	Conclusion
	expensive treatment processes rather than alternative treatment processes.
Will additional discharge be allowed if there is no additional environmental capacity to assimilate it?	EA have confirmed that this question falls beyond the scope of the WCS.
If new major infrastructure (wastewater treatment works, major pumping mains or sewer mains) are needed, can they be provided in time, and can they be funded?	Where new major infrastructure is required, for example new water resources or treatment works, this would be most likely funded through Thames Water's business planning process where customers' bills reflect the investment Thames Water are required to make to meet its statutory obligations. Thames Water will plan to deliver these major upgrades in time for the growth. For other local upgrades, such as local sewerage network improvements, costs will be shared between developer and undertaker, with phasing within developments being necessary in some incidences to ensure network infrastructure is in place at the appropriate development phase. Where necessary this can be controlled by appropriate planning conditions
Environmental Opportunities	
Are we making the most of our new development?	Currently a number of drivers mitigate against the use of SuDS and Water Sensitive Urban Design (WSUD) within new developments. Principle among these are: Uncertainties regarding the funding, adoption and maintenance of SuDS.
Are there multi-use options that will provide water resources, flood risk management	Proposed changes to the Building Regulations will restrict the ability of LPAs to require water efficient design standards.
and water quality benefits?	A lack of appreciation amongst developers and buyers of the whole-life cost of a house, and a lack of incentivisation to developers to adopt any efficiency measures which may increase the construction costs, even where these may significantly reduce the running costs of that house.

E Environmental Designations

		No buffer zone applicable						100				000			500 h#			1	1000-				0000	-			
b b		Number of	Number of	Aquifor Mans							100m buffe		Ancient or		200m buffer			500m buffer	r 			1000m	n buffer			2000m buffei	r
Name Name Name Name N																		World									
C C C C C C C C C C C C C C C C C C C C C C C C C C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th="" thr<=""><th></th><th></th><th></th><th></th><th></th><th></th><th>WFD</th><th></th><th></th><th>Historic</th><th></th><th></th><th></th><th>Listed</th><th>Water</th><th>Scheduled</th><th>Parks and</th><th></th><th>Registered</th><th>National</th><th></th><th></th><th>National</th><th></th><th></th><th></th><th></th></thc<></thc<></thc<></thc<>							WFD			Historic				Listed	Water	Scheduled	Parks and		Registered	National			National				
								LNR	Greenbelt		Landfill site	ALC									AONB	NNR		SSSI	Ramsar	SAC	SPA
	3132	6	6 (6	1	1 0	0 0	0	0	0	1	1	(0 0	0	0	0 0	0 0	0 0	0	1	0	0) 1	0	0	0
		9	9	7	1 :	2 0	0 0	0	0	0	2	2 1	(0 0	1	0	0 0	0 0	0 0	0	1	0	0) 1	0	0	0
	A_2	7	7 (6	2 () 1	0	0	0	0	1	1	(0 0	0	1	0	0	0 0	0	1	0	0	0 0	0	0	0
		6	6 6	6	1 (0 0		-	0	0	1	1	-	-	1	1	0	0 0	0 0	0	1	0	0	0 0	0	0	0
		13	3 8	8	1 :	2 0	0 0	0	0	0	2	2 1	() 4	1	1	0	0 0	0 0	0	1	0	0 0	0 0	0	0	0
		9	9	7	1	0	0 0	0	0	1	2	2 1	(0 0	0	2	0	0 0	0 0	0	1	0	0 0	0 0	0	0	0
		5	5	5	1 () 1	0	0	0	0	1	1	(0 0	0	0	0 0	0 0	0 0	0	1	0	0	0 0	0	0	0
		8		/	1 (0 0		-	0	ů		1	-	-	1	1	0	0 0	-	-	1	ů	•	0 0	0	v	v
		15		9	2	2 1	ů	0	0	0	-	2 1		, ,	1	1	0		0	v	1	0	0	0 0	0	0	0
		24	1 (2	1			0	0	, v		2	``````````````````````````````````````	, °	0	1	0			v	1	, v		1	0	0	0
				9	1 4			0	0		2		· · · · ·			1	0		•	0	1	, v		1	0	0	0
				6	1	> 0	0	0	0	0	2	> 2			0	1	0		0	0	1	0) 1	0	0	0
		14	4 8	8	1	1 0	0 0	0	0	0	2	2 1	(0 6	0	1	0	0	0 0	0	1	0	0) 1	0	0	0
	B_22	12	2 8	8	1	1 0	0 0	0	0	0	2	2 1	() 4	0	1	0	0	0 0	0	1	0	0) 1	0	0	0
	B_25	9	9	7	1	1 0	0 0	0	0	0	2	2 2	2 (0 0	0	1	0	0 0	0 0	0	1	0	0) 1	0	0	0
	B_26	5	5 5	5	1 (0 0	0 0	0	0	0	0) 1	() 1	0	0	0 0	0 0	0 0	0	1	0	0) 1	0	0	0
	B_3	29	3 8	8	1	1 0	0 0	0	0	0	1	1	(21	1	2	2 0	0 0	0 0	0	1	0	0 0	0 0	0	0	0
	B_30	-	-	6	2	3 0	ů	•	0	°	C) 1	(0 0	2	1	0	0	•	ů	1	°	, v	0 0	0	0	0
				9	1	1 0	0	0	0		2	2 1	() 1	1	1	0	0	0	0	1	- ·		1	0	0	0
		11	1 6	6	2	0	0	0	0	0	0	1	(4	0	2	2 0	0	0	0	1	0	0	0	0	0	0
		6		b 7	1		0	0	0	0		1	(0 0	1	1	0			0	1	0		0	0	0	0
			7	/	1	<u> </u>		0	0	0		1		4	1	1	0			0	1	0		0	0	0	0
N. U S L S L S		1/		5	1		, 0	0	0	0	2			9	0	1			0	0	1				0	0	0
N.V. I I I I		5		4	2 0		0	0	0	0) 1		, <u> </u>	1	0			0	v	1	0	0	0	0	0	0
		4	4	3	2			0	0) 1			0	0				0 0	1		, ·) 0	0	0	0
	BK_14A	7	7 6	6	1	2 0	1	0	0	, v	0) 1	· · ·	, ,	1	0	0 0		0 0	0	1		, ·) 0	0	0	0
MA MA MA MA MA <td> BK 14B</td> <td>6</td> <td>6 (</td> <td>6</td> <td>1</td> <td>1 0</td> <td>) 1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>) 1</td> <td>(</td> <td>0 0</td> <td>1</td> <td>0</td> <td>) 0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	 BK 14B	6	6 (6	1	1 0) 1	0	0	0	0) 1	(0 0	1	0) 0	0	0	0	1	0	0	0 0	0	0	0
	BK_3	8	3 4	5	4 (0 0	0 0	0	0	0	0) 1	() 1	1	0) 0	0	0 0	0	1	0	0	0 0	0	0	0
	BK_4	7	7 (6	1	1 0	0 0	0	0	0	C) 1	(2	1	0	0 0	0 0	0 0	0	1	0	0	0 0	0	0	0
M.T G	BK_5	5	5 5	5	1	1 0	0 0	0	0	0	C) 1	(0 0	1	0	0 0	0	0	0	1	0	0	0 0	0	0	0
m. 4 <td>BK_6</td> <td>7</td> <td>7 (</td> <td>6</td> <td>1 :</td> <td>2 0</td> <td>) 1</td> <td>0</td> <td>0</td> <td>0</td> <td>C</td> <td>) 1</td> <td>(</td> <td>0 0</td> <td>1</td> <td>0</td> <td>0 0</td> <td>0 0</td> <td>0 0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	BK_6	7	7 (6	1 :	2 0) 1	0	0	0	C) 1	(0 0	1	0	0 0	0 0	0 0	0	1	0	0	0 0	0	0	0
ILEP S		9	9 4	4	6 (0 0	0 0	0	0	0	C) 1		, 0	1	0	0 0	0	0	v	1	0	0	0 0	0	0	0
MOM P MOM P <th< td=""><td></td><td>4</td><td>4 4</td><td>4</td><td>1 (</td><td>0 0</td><td>0 0</td><td>0</td><td>0</td><td>0</td><td>C</td><td>) 1</td><td>(</td><td>0 0</td><td>1</td><td>0</td><td>0 0</td><td>0 0</td><td></td><td>v</td><td>1</td><td>, v</td><td></td><td>0 0</td><td>0</td><td>0</td><td>0</td></th<>		4	4 4	4	1 (0 0	0 0	0	0	0	C) 1	(0 0	1	0	0 0	0 0		v	1	, v		0 0	0	0	0
BONE L B C C C C <td></td> <td>6</td> <td>6 (</td> <td>6</td> <td>1</td> <td>1 0</td> <td>) 1</td> <td>0</td> <td>0</td> <td>°</td> <td>C</td> <td>) 1</td> <td></td> <td></td> <td>1</td> <td>0</td> <td>0 0</td> <td>0</td> <td>-</td> <td>-</td> <td>1</td> <td>•</td> <td></td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>		6	6 (6	1	1 0) 1	0	0	°	C) 1			1	0	0 0	0	-	-	1	•		0 0	0	0	0
SOM_GR I </td <td></td> <td>10</td> <td></td> <td>7</td> <td>1</td> <td>2 0</td> <td>0 0</td> <td>0</td> <td>0</td> <td></td> <td>2</td> <td>2 2</td> <td>(</td> <td>0 0</td> <td>1</td> <td>0</td> <td>0 0</td> <td>0 0</td> <td>0 0</td> <td>0</td> <td>1</td> <td>•</td> <td></td> <td>0 1</td> <td>0</td> <td>0</td> <td>0</td>		10		7	1	2 0	0 0	0	0		2	2 2	(0 0	1	0	0 0	0 0	0 0	0	1	•		0 1	0	0	0
BODM A C C C C <td></td> <td>8</td> <td>3</td> <td>7</td> <td>1</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>2</td> <td></td> <td>0 0</td> <td>1</td> <td>0</td> <td>0 0</td> <td></td> <td>0 0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td>		8	3	7	1	0		0	0	0	1	2		0 0	1	0	0 0		0 0	0	1	0	0	1	0	0	0
C. HCA O O O O <td></td> <td>10</td> <td></td> <td>8</td> <td>1</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td></td> <td></td> <td></td> <td>0</td> <td>1</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>1</td> <td>0</td> <td></td> <td>1</td> <td>0</td> <td>0</td> <td>0</td>		10		8	1			0	0	0	4				0	1	0			0	1	0		1	0	0	0
0 0				8	1			0	0	0	2	1	(16	1	4	0			0	1	0		0	0	0	0
C 03 0				7	7 (0	0 0	0	0	0	1	22) 3	1	4				0	1	0			0	0	0
C111 C I				9	2	1 0	0 0	0	0	, v	2	2 1	() 10	1	4	1	0	•	0	1	0	0	0 0	0	0	0
C.144 1 0 0 0 0	C 111	7	7 (6	1 () 1	0	0	0	0	1	2	2 () 1	0	1	0	0	0 0	0	0	0	0	0 0	0	0	0
C.38 01 7 5 0 7 0 <td>C_124</td> <td>9</td> <td>9 (</td> <td>6</td> <td>1 (</td> <td>0 0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>2 2</td> <td>2 (</td> <td>) 1</td> <td>0</td> <td>2</td> <td>2 0</td> <td>0 0</td> <td>0 0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	C_124	9	9 (6	1 (0 0	0 0	0	0	0	2	2 2	2 () 1	0	2	2 0	0 0	0 0	0	1	0	0	0 0	0	0	0
C.43 9 7 1 0 0 0 2 0 2 0	C_132	6	6	4	2	0 0	0 0	0	0	0	C) 2	. () 1	0	0	0 0	0	0	0	1	0	0	0 0	0	0	0
	C_136	11	1	7	2	1 0		÷	0	0	1	1			0	2	2 0	0	-	-	1	Ĵ	°	0 0	0	0	0
C.143 G.44 G.44 <t< td=""><td>C_143</td><td>9</td><td>9</td><td>7</td><td>1</td><td>1 0</td><td>°</td><td>•</td><td>0</td><td>0</td><td>2</td><td>2 1</td><td></td><td>-</td><td>0</td><td>2</td><td>2 0</td><td>0 0</td><td>0</td><td>ő</td><td>1</td><td>0</td><td>0</td><td>0 0</td><td>0</td><td>0</td><td>0</td></t<>	C_143	9	9	7	1	1 0	°	•	0	0	2	2 1		-	0	2	2 0	0 0	0	ő	1	0	0	0 0	0	0	0
C:143 (1) <td< td=""><td>C_145</td><td>15</td><td>5 8</td><td>8</td><td>2</td><td>1 0</td><td></td><td>•</td><td>•</td><td>÷</td><td>-</td><td>2 1</td><td></td><td></td><td>0</td><td>_</td><td></td><td>0</td><td></td><td></td><td>1</td><td>ţ</td><td>ţ</td><td>•</td><td>0</td><td>•</td><td>÷</td></td<>	C_145	15	5 8	8	2	1 0		•	•	÷	-	2 1			0	_		0			1	ţ	ţ	•	0	•	÷
	C_146	8	3 (6	1 (°		÷	•	-		2 1			0	2		0 0			1	-	-	•	0	•	÷
	0_148 C 150	7		0	1		-	-	-	-						1	ů				0				-	-	-
C16 3 4 0	C 158			6	1			-	0	-	-	1			2	3					1	-	-		0	-	-
	C 16	•		6	4 0	<u> </u>		÷	0			1		· · ·	n	2	ů	. U			1	-	-	-	0	-	-
C164 1 6 5 7 1 0	C 161	3	3	3	1				0			1			0						0) 0	0	-	-
C.165 0 <td>C_164</td> <td>11</td> <td>1 6</td> <td>6</td> <td>5</td> <td>1 1</td> <td></td> <td>÷</td> <td>0</td> <td>ů</td> <td></td> <td>2 1</td> <td>-</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>-</td> <td>-</td> <td>1</td> <td>° °</td> <td>°</td> <td>0 0</td> <td>0</td> <td>-</td> <td>-</td>	C_164	11	1 6	6	5	1 1		÷	0	ů		2 1	-		0	0	0		-	-	1	° °	°	0 0	0	-	-
C17 15 8 2 1 0 0 3 1 0	C_165			7	8	0 0) 0	0	0	0	2	2 2			2	4	0	00			1	0	0	0 0	0	0	0
C.174 -1 -1 -0 0 -1 -1 0	C_17			8	2	1 0	-	-	0	-	_	2 1			0	3	1	0			1	-	-	00	0	-	
C.174 -1 -1 -0 0 -1 -1 0	C_173	7	7	4	3	0 0						2 1			-	1	-	-			0				-		
C.39 7 6 1 0	C_174			4	1 (0 0	-	-		-		1			-	1	-	-			0			-	÷		
C.42 11 7 2 0 0 0 0 1 1 1 0 <td>C_22</td> <td>18</td> <td>3</td> <td>7</td> <td>2</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td>2</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	C_22	18	3	7	2	-						1			1	2	-	-			1			-			
C.44 15 7 1 1 0 0 0 0 7 0 3 1 0 <td>C_39</td> <td>7</td> <td>(</td> <td>6</td> <td>1 (</td> <td>°</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>2</td> <td>1</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>-</td> <td>0</td> <td>-</td> <td>-</td>	C_39	7	(6	1 (°	-	-	-			1			2	1	-	-			0			-	0	-	-
C.57 29 8 1 1 0 0 0 0 1 3 1 0 0 1 0 <td>U_42</td> <td></td> <td></td> <td>/</td> <td>2 (</td> <td>0 0</td> <td>-</td> <td>-</td> <td>0</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>-</td> <td>-</td>	U_42			/	2 (0 0	-	-	0			<u> </u>			1	1	0	0			1			0	0	-	-
C.57 29 8 1 1 0 0 0 0 1 3 1 0 0 1 0 <td>0_44</td> <td></td> <td></td> <td>/</td> <td>0</td> <td></td> <td>-</td> <td>-</td> <td>0</td> <td>-</td> <td>-</td> <td>1</td> <td></td> <td></td> <td>0</td> <td>3</td> <td></td> <td>0</td> <td>-</td> <td>-</td> <td>1</td> <td>ů</td> <td>° °</td> <td>0</td> <td>0</td> <td>•</td> <td>÷</td>	0_44			/	0		-	-	0	-	-	1			0	3		0	-	-	1	ů	° °	0	0	•	÷
C.58 5 4 1 0	0_52 C.57			8	3 1			÷	0			/ 1	-		1	2	1	0	-	-	1	Ĵ	° °		0	9	•
C_64 5 4 1 0	C_58			4	1 /			÷	0	0	,) 1				3			ţ	÷	1	÷	ţ	°	0	÷	÷
C_70 63 9 2 1 0 <td>C 64</td> <td>-</td> <td>-</td> <td>4</td> <td>1</td> <td></td> <td></td> <td>-</td> <td>0</td> <td></td> <td></td> <td>2 1</td> <td>-</td> <td></td> <td>Ţ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>-</td> <td>-</td> <td></td> <td>•</td> <td>-</td> <td>-</td>	C 64	-	-	4	1			-	0			2 1	-		Ţ						1	-	-		•	-	-
C_70B 1 0 1 0 0 1 1 0 <td>C 70</td> <td>5</td> <td></td> <td>9</td> <td>2</td> <td></td> <td></td> <td>-</td> <td>0</td> <td>-</td> <td></td> <td>2 1</td> <td>-</td> <td></td> <td>-</td> <td>4</td> <td>1</td> <td>1 0</td> <td>-</td> <td>-</td> <td>1</td> <td>-</td> <td>-</td> <td>•</td> <td>0</td> <td>-</td> <td>-</td>	C 70	5		9	2			-	0	-		2 1	-		-	4	1	1 0	-	-	1	-	-	•	0	-	-
C_75 30 9 16 0 1 0 0 1 0 <td>C 70B</td> <td></td> <td></td> <td>9</td> <td>1</td> <td>1 0</td> <td>°</td> <td>•</td> <td>•</td> <td>ů</td> <td>-</td> <td>1</td> <td>-</td> <td></td> <td></td> <td>4</td> <td>1</td> <td>1 0</td> <td></td> <td></td> <td>1</td> <td>-</td> <td>-</td> <td>•</td> <td>, v</td> <td>-</td> <td>-</td>	C 70B			9	1	1 0	°	•	•	ů	-	1	-			4	1	1 0			1	-	-	•	, v	-	-
C_76 9 6 1 0 0 0 0 0 2 0 1 0	C_75			9 1	16 (0 1	-	-	-	1	2	2 3			0	1	1	i o			1	-	-	-	0	-	-
C_77 10 6 3 0 1 0 0 0 2 2 0 0 1 0 <td>C_76</td> <td>9</td> <td>9 (</td> <td>6</td> <td>1 (</td> <td>00</td> <td>-</td> <td>-</td> <td>0</td> <td>0</td> <td>2</td> <td>2 2</td> <td>-</td> <td></td> <td>0</td> <td>2</td> <td>2 0</td> <td>0</td> <td></td> <td></td> <td>1</td> <td>-</td> <td>-</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	C_76	9	9 (6	1 (00	-	-	0	0	2	2 2	-		0	2	2 0	0			1	-	-	0 0	0	0	0
C_79 6 5 1 0	C_77	10		6	3	0 1	0	0	0	0	2	2 2	. (0 0	0	0) 1	0	0	0	1	0	0	0 0	0	0	0
C_80 9 6 3 1 0	C_79	6	6 5	5	1 (00	0 0	0	0	0	2	2 1			0	0	1	0			1	÷	ţ	00	0	0	0
C_81 8 5 3 1 0 0 0 2 1 0	C 80	9	9 (6	3	1 0		÷	0	-		2			1	1	0	0 0			0	-	-	0 0	0	•	÷
C_84A 11 5 4 0 0 0 1 2 3 0 <td>C_81</td> <td>8</td> <td>3</td> <td>5</td> <td>3</td> <td>1 0</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>2 1</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>0 0</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td>	C_81	8	3	5	3	1 0	-	-	-	-		2 1			-			0 0			1				0		
C_84B 9 4 3 0 0 0 0 0 0 2 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C_82			7	2	1 0		-	0	0	2	2 1	1		0	2	-	· · · ·			1	-	-		0		
9 4 3 0 0 0 0 2 3 0 0 1 0	C_84A			5	4 (0 0		÷	0	1	2	2 3			0	1	ő	Ů	-	-	0	-	-		0	-	-
<u>u_sau i 6 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>	C_84B	-		4	3	*			-			-			, v						J				-		
	U_84C	6		4	<u>- </u> (0 0	0 0	0	0	1	2	2 2	(<u> </u>	0 0	0	0	0 0	0 0	0 0	0	0	0 0	0 0	0	0	0	0

			No buffer zone applicable 100m buffer						000 1 11							1000										
	Number of	Number of	A mulifar Mana			1			1	100m buffe	r	Analantan	1	200m buffer			500m buffe	r			1000m	n buffer	1		2000m buffer	er
	Number of individual	Number of feature	Aquifer Maps - Bedrock	 Aquifer Maps - Superficial 	Groundwater Source							Ancient or Semi-					World									
	features within		Deposit	Deposits	Protection	WFD			Historic			Natural	Listed	Water	Scheduled	Parks and		Registered	National			National				
CDC_Ref	buffer	within buffer	Designation	Designation	Zone	Classification	LNR	Greenbelt		Landfill site	ALC		Buildings		Monument		Sites	Battlefield		AONB	NNR	Park	SSSI	Ramsar	SAC	SPA
C 84D	6	6	4	1 (0 0) (0	0	1		2 2	2 (0 0) 0	0	0 0) () 0	0 0	0	0) 0	0	0	
C 89	10))	7	2	2 0		0 0	0	0		0 1	1 (0 1	2	1	0) 0	0 0	1	0		0 0	0	0	0 0
C_93	21		8	1	1 0	0 0	0	0	0		1 1	1 (0 12	2 0	3	3 1	1 0) 0	0	1	0	0 0) 0	0	0	0 0
C 97	24	4	9	2	1 0) (0	0	0		2 1	1 (0 11	1	4	4 1	1 () 0	0	1	0	0 0) 0	0	0	0 0
 CC_23A	3	3	3	1 (0 0) (0	0	0		0 1	1 (0 0	0 0	0	0 0) () 0	0	1	0	0 0) 0	0	0	0 0
CC_23B	3	3	3	1 (0 0	0 0	0	0	0	(0 1	1 (0 0	0 0	0	0 0) () 0	0	1	0	0 0) 0	0	0	0 0
CC_23C	5	5	4	1 (0 0) (0	0	0		0 2	2 (0 0	0 0	1	0) () 0	0	1	0	0 0) 0	0	0	0 0
CC 23D	7	7	5	2 (0 0) (0 0	0	0		0 2	2 (0 0) 0	1	0) () 0	0 0	1	0	0 0) 1	0	0) 0
CC 23E	3	3	3	1 (0 0) (0 0	0	0		0 1	1 (0 0) 0	0) 0) () 0	0 0	1	0	0 0) 0	0	0) 0
CC_29	8	3	5	2	1 0	0 0	0 0	0	0		0 3	3 (0 0) 1	0	0 0) (0 0	0 0	1	0	0 0	0 0	0	0	0 0
CC_38A	8	3	6	2 (0 0	0 0	0 0	0	0	(0 1	1 (0 2	2 0	1	0) (0 0) 1	1	0	0	0 0	0	0	0 0
CC_38B	7	7	6	1 (0 0	0 0	0 0	0	0	(0 1	1 (0 2	2 0	1	0) (0 0) 1	1	0	0 0	0 0	0	0	0 0
CC_40	8	3	5	2 (0 0	0 0	0 0	0	0	(0 2	2 (0 2	2 0	1	0) (0 0	0	1	0	0 0	0 0	0	0	0 0
CC_41	5	5	5	1 (0 0	0 0	0	0	0		0 1	1 (0 0) 1	1	0) (0 0	0 0	1	0	0 0	0 0	0	0	0 0
CC_43	4	4 .	4	1 (0 0	0 0	0 0	0	0		0 1	1 (0 0	0 0	1	0) (0 0	0 0	1	0	0 0	0 0	0	0	0 0
CC_44	8	3	6	1 (0 0	0 0	0 0	0	0	(0 2	2 (0 2	2 1	0	0 0) (0 0) 1	1	0	0 0	0 0	0	0	0 0
CC_48	21	1	6	2 (0 0	0 0	0 0	0	0	(0 1	1 (0 15	6 0	1	0) (0 0	1	1	0	0 0	0 0	0	0	0 0
CC_49A	7	7	5	2	1 0	0 0	0 0	0	0	(0 2	2 (0 0) 1	0	0 0) (0 0	0 0	1	0	0 0	0 0	0	0	0 0
CC_50	7	7	3	3 (0 0	0 0	0	0	0		0 3	3 (0 0	0 0	0	0 0) (0 0	· ·	1	0		0 0	0	0	0 0
CCN_E1	8	3	5	2	1 0	0 0	0	0	0	(0 3	3 (0 0	1	0	0 0) (0 0	0	1	0		0 0	0	0	0 0
CCN_E2	4	4	3	1 (0 0	0 0	0	0	0	(0 2	2 (0 0	0	0	0 0) (0 0	0	1	0	0	0 0	0	0	0 0
CCN_E3A	6	6	5	1	1 0	0 0	0	0	0	(0 2	2 (0 0) 1	0	0 0) (0 0	0	1	0	0	0 0	0	0	0 0
CCN_E3B	9	9	6	2 2	2 0	0 1	0	0	0	(0 2	2 (0 0	1	0	0 0) (0 0	0	1	0	0	0 0	0	0	0 0
CIR_E1	8	3	5	3	1 0	0 0	0	0	0		2 1	1 (0 0	0 0	0	0 0) (0 0	0	1	0	0 0	0 0	0	0	0 0
CIR_E10	29	9	8	1	1 C	0 0	0	0	0		U 1		0 20		3	3 1	(0 0	, v	1	0		0	0	0	0
CIR_E11	9		/	1		ע 1	0	0	0		1 2	<u> (</u>	0 0	_	1	0		0	0	0	0		0	0	0	0
CIR_E12	24		9	2			0	0	0	•	2 1	(0 11		4	u <u>1</u>		0	0	1	0		0	0	0	0
CIR_E13	23		9	2		<u>, C</u>	0	0	0		2 1		0 10		4	H 1			-	1	0	, v	0	0	0	0
CIR_E14	22		8	2) 1	0	0	0	(0		0 11	2	3	3 0		0	0 0	1	0	0 0	0 0	0	0	0 0
CIR_E15A CIR E15B	12	2	9	1			0	0	0		1		0 3	2	1	0			0 0	1	0		0 0	0	0	0 0
CIR_E15B CIR_E16	11 40		9		2 (0	0	0				0 1	2		0			0 0	1	0			0	0	
CIR_E16 CIR_E17	40	-	9	2			0 0	0	0	· ·	2		0 27	1	4				0 0	1	0	U U		0	0	
CIR_E17 CIR E2	7	7	5	3 1			0	0	0	`					1	0			-	0	0	· ·		0	0	
CIR_E2	10		5 6	2			0	0	0				0 2		1	0			, v	0	0			0	0	, 0
CIR_E20	10		4	3 (0	0	1						1				· ·	0	0	, v		0	0	, ,
CIR E4B	6		4	1 (0	0	1		2 2		0 0		0				-	0	0			0	0	, ,
CIR E5	30		9 1	6 (0 1		0	0	1		2 3	- (0 4		1	1			0	1	0	-		0	0	
CIR_E6	10		6	3	0 1		0	0	0		2 2				0	1			0	1	0			0	0	
CIR E8	11	1	7	3	0 1		0	0	0		2 2		0 1	, 0	0) 1			0	1	0			0	0	
CIR E9	5	5	4	1 (0 0		0	0	0		2 1	1 (0 0		0) 0			0	1	0) 0	0	0	
DA 1A	12		6	1	1 3	3 0	0	0	0		2 2		0 3		0				0	0	0			0	0	
DA 1B	12		6	1	1 3		0	0	0		1 2	- ``	0 4		0				Ĵ	0	0		0	0	0	
DA_2		3	6	1	1 3	3 0	0	0	0		1 1	1 (0 0		1	0			0	0	0) 0	0	0	
DA 4	11	1	8	1	1 2		0	0	0		2 1	1 (0 2		1	0			0	0	0) 0	0	1	0
DA 5A	12		6	1	1 3	3 0	0 0	0	0		2 2	2 (0 3		0	0 0) (0 0	0	0) 0	0	0	0 0
	8	3	5	1	1 3	3 0		0	0		1 2	2 (0 0		0	0 0) () 0	0 0	0	0) 0	0	0	
DA_5B DA_5C DA_7	12	2	6	1	1 3	3 0	0 0	0	0		2 2		0 3	s 0	0	0 0) 0	-	0	0		0 0	0	0	0 0
DA 7	10		7	1	1 2	2 0	0	0	0		1 2	2 (0 2	2 0	1	0) () 0	0 0	0	0	0 0) 0	0	0	0 0
 DA_8	7	7	5	1	1 3	3 0	0	0	0		1 1	1 (0 0	0 0	0	0 0) () 0		0	0	0 0) 0	0	0	0 0
DA_9	8	3	5	1 :	2 2	2 0	0	0	0	(0 2		0 0	0 0	1	0) () 0		0	0	0 0) 0	0	0	0 0
F_14	12	2	6	3	2 (-	-	-	1		2 1	1 (0 0	0	0 0) (0 0		0	0			0	0	-
F 15	5		4	1	1 0	0 0	0	0	0	(0 2	2 () 0	0	0 0) (0 0		0	0	0 0) 1	0	0	0 0
F 20A	9	Э	6	2	1 1	1 C	0 0	0	0		0 2	2 (0 1	0	0	0 0) (0 0	0 0	0	0	0 0) 2	0	0	0 0
F_24 F_26	6	6	4	1	1 0	0 0	0	0	0	(0 2	2 (0 0	00	0	0 0) (0 0		0	0	0 0	2	0	0	0 0
F_26	2	2	2	1 (0 0	0 0	-	0	0		0 1		0 0	0 0	0	0 0) (0 0		0	0		0 0	0	0	°
F_32 F_34	6	6	4	1 (0 3	з с	°,	0	0		0 1		0 0	0 0	1	0) (0 0	-	0	0		0 0	0	0	, 0
F_34	10	0	5	2 2	2 3	3 C	-	÷	0		0 2		0 0	0 0	1	0) (0 0		0	0	-		0	0	
F 35B	7	7	5	1	1 3		0	-	0		0 1		0 0	0 0	1	0		0 0		0	0			-	0	
F_36B	14	1	7	2 :	3 3	3 C	-	-	0		0 3		0 1	1	1	0		0 0		0	0			÷	0	
F_38	9	9	6	1	1 1	1 C			0		0 2		0 3	0	0	-		, 0		0	0			0	0	
F_41	6		5	1	1 0	0 0	-	-	0		0 2		0 1	0	0			0 0		0	0			0	0	-
F_44	6	6	4	1	1 3	, ,	-	0	0	1	0 1		0 0	0 0	0	0 0) (0 0		0	0		0 0	0	0	
F_45 F_46	7	7	6	1	1 1	1 C	-	0	0		0 2		0 1	0	0	0 0) (0 0	-	0	0) 1	0	0	
F_46	7	7	5	1	1 3	3 C		0	0	-	0 1		0 0	0 0	1	0) (0 0	-	0	0	°	, ·	0	0	°
FFD_E2	5		4	1	1 C	0 0	÷	0	0		0 2	2 (-	0	0	0) (0 0	Ţ	0	0			0	0	
FFD_E3	9	9	6	2	1 1			-	0		0 2		0 1	0	0	ů	-	0 0		0	0	-			0	
K_1A	11	1	/	1 (U C	0 0	-	Ŷ	0		2 1	1 (-	2 2	0	ů		0 0		0	0	-	,		0	
K_1B	7	/	5	1 (U C	0 0	°,	Ţ	0		2 1	1 (0 0	0	, 0		0 0		0	0	-	,	-	0	
K_1C	8	3	6	1 (0 0	-	-	-	0		2 1	1 (1	0		-	, 0		0	0	-			0	
K_2	7	7	6	1 (0 0	0 0	-	Ţ	0		1 1		0 1	1	0	0 0) (0 0		0	0	-		0	0	
K_3	7	/	5	3 (U C	0 0	-	0	0		1 1		0 0	0 0	0	0) (0 0		0	0	-	1	0	0	
IK 4		וכ	7	2	1 0	0 0	•	0	0	1	2 1		0 2	2 0	0	0 0) (0 0		0	0	, v) 1	0	0	°
<u> </u>	10			11 (0 0	0 0	0	0	0		1 1	1 (-	0 0	0	0 0) (0 0		0	0		, .	0	0	
K_5	4	4	4												0	0	N (0 0			0	0				
K_5 K_6A	4		4	1 (0 0	0 0		0	0		2 1	1 (0	, 0	, (0	-	-	, .	0	0	
K_4 K_5 K_6A K_6B	4 10 5	5	4 7 5	1 (0 0	0	-	0		2 1 1 1	1 (0 0	0 0	0	0 0	, (0 0	1	0	0	0) 1	0	0	0 0
K_6A K_6B L_1	4 10 5 16	5	4 7 5 7				0 0	-	0			1 (0 0 0 9	0 0	0	2 1		0 0) 1) 1	0	0	0 0) 1) 0	000000000000000000000000000000000000000	0	0 0
K_6A K_6B L_1 L_12	4 10 5 16 5	5	4 7 5 7 5		1 (1 (0 0 0 0 0	0	000000000000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·	2 1 1 1 0 1 1 1	1 () 1 () 1 ()	0 0 0 9 0 0	0 0 0 0 0 0	0 0 2 1	0 0		0 0 0 0 0 0) 1) 1) 0	0	000000000000000000000000000000000000000	0 0 0 0 0 0) 1) 0) 0	0 0 0	0 0 0	0 0 0 0 0
K_6A K_6B L_1	4 10 5 16	5 6 5 1	4 7 5 7 5 7		-	0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	0 0 0 0 0	0	000000000000000000000000000000000000000		2 1 1 1 1 1 1 1 1 1 2 2	1 (1 1 (1 2 (1	0 0 0 9		0 0 2 1 1	2 1		0 0 0 0 0 0 0 0) 1) 1) 0		000000000000000000000000000000000000000) 1) 0) 0) 0) 0) 0	-	0	0 0 0 0 0 0 0 0

No No No No No No No No No No No				No buffer zone applicable 100m buffer						200m buffer			500m buffer				1000-	. huffer		1	2000m buffei						
No No No No No No No No No No No No No No No No No No No No<	r	Number of	Number of	Aquifer Mans			1				Toom bulle		Ancient or		200m buller			500m buller				10000	1 buller			2000m buller	<u></u>
D D D D D D <																		World									
							WFD			Historic				Listed	Water	Scheduled	Parks and		Registered	National			National				
	CDC_Ref				Designation	Zone	Classification	LNR	Greenbelt	landfill	Landfill site	ALC	Woodland	Buildings	courses	Monument	Gardens	Sites			AONB	NNR	Park	SSSI	Ramsar	SAC	SPA
	L_14	6	6 (6	1	1 0	0 0	0 0	0	0	() 1		, ,	0	1	1	0	0 0	0	0	0	0 0	0 0	0	0	0
Image Image <th< td=""><td>L_16</td><td>6</td><td>6</td><td>5</td><td>1</td><td>1 0</td><td>-</td><td>,</td><td>0</td><td>0</td><td>2</td><td>2 1</td><td>,</td><td>°</td><td>0</td><td>1</td><td>0</td><td>0 0</td><td></td><td>v</td><td>0</td><td></td><td>, v</td><td>0 0</td><td>0</td><td>0</td><td>0</td></th<>	L_16	6	6	5	1	1 0	-	,	0	0	2	2 1	,	°	0	1	0	0 0		v	0		, v	0 0	0	0	0
		4	4 .	4	1	1 0	,	,	0	, v	() 1			0	1	0	0 0	-	-	0		, v	0 0	0	0	0
		13	3	7	1 :	2 0	-	. ÷	0	0	() 1			0	1	0	0 0	0 0	1	0	0 0	0 0	0 1	0	0	0
		8	3 (6	1	1 0	0 0	0 0	0	0	(0 2	(2	0	1	0	0 0	0 0	0	0	0 0	0 0	0 1	0	0	0
D D		4	1 4	4	1	1 0		0 0	0	0	() 1	(0 0	0	1	0	0 0	0 0	0	0	0 0	0 0	0 0	0	0	0
n n		6		4	1		, ,	,	0	0	2	2 2		, v	0	0	0 0	0 0	0	0	0	0	U U	0	0	0	0
		-	-	5	2	3 0	-		0				-		1	1			-	-	1	ů			0	v	,
		5		5	1	1 0	, °	, ,	0	0	,			, L	1			0	0		0	, ·			0	v	, 0
	L 9	7	7	6	1	1 0	°	,	0	, v	() 1		-	0	1	0			v	0		, v		0	0	0
	LEC_E1	9	9	6	1 :	2 0		0 0	0	0	() 2	(2	0	1	0		0 0	0	0	0 0) 1	0	0	0
	LEC_E2A	6	6	5	1	1 0	0 0	0 0	0	0		2 1	(0 0	0	1	0	0	0 0	0	0	0	0 0	0 0	0	0	0
	LEC_E2B	6	6	5	1	1 0	0 0	0 0	0	0	2	2 1	(0 0	0	1	0	0	0 0	0	0	0 0	0	0 0	0	0	, 0
	LEC_E3	14	4 8	8	2	3 0	0 0	0 0	0	1	2	2 2	(0 0	1	2	2 0	0 0	0 0	0	1	0	0	0 0	0	0	, 0
	LEC_E4	10) (8	1	1 0	0 0	0 0	0	0	() 2	(2 2	1	1	1	0	0 0	1	0	0 0	0 0	0 0	0	0	0
	M_11	8	3 (6	1 :	2 0	0 0	0 0	0	0	2	2 1	(0 0	0	1	0	0 0	0 0	0	1	0	0 0	0 0	0	0	0
	M_12A	7	7 !	5	1	1 0	0 0	0 0	0	0	2	2 2	(0 0	0	0	0 0	0	0 0	0	1	0	0	0 0	0	0	0
	M_12B	6	6	5	1	1 0		, °	0	ů	2	2 1	(0 0	0	0	0 0	0	•	ů	1	°		0 0	0	0	0
	M_12C	5	5	5	1	1 0	0 0	0 0	0			1 1	(0 0	0	0	0 0	0	-	-	1	- ·		0 0	0	0	0
	M_13	8	3 (5 -	1 :	3 0	0	0	0	0			(0	0	1	0	0	0	0	1	0	0 0	0	0	0	0
		7			1				0	0	2	2 2	(<u>, 0</u>	0	0	0			0	1	0		<u>, 0</u>	0	0	
		8	7	5	1	∠ 0 1 ^			0	0			(<u>, 0</u>	0	1				0		0		0 1	0	0	
		/		6	1	1 0	, °	, ,	0	0			(/	- <u>0</u> - 1	0	0			0	0	1	0			0	0	
NUM I	M 19A	10		5	1 '	3 0	, 0	, 0	0	0					0	0			0	v	1	0			0	0	0
	M_19A M_19B	8	3	6	1	2 0	,	,	0	, v		2 1			1	0 0) 0			0 0	1) n	0	v	, .
	M_19C	10		6	1	3 0	0	, 0	0	, v	-	1 3	,	°	1	0	0 0		0 0	0	1			0 0	0	v	, ,
	M 21	8	3	5	1 :	2 0	0 0	0 0	0	0	2	2 2	(0 0	0	0	0 0	0	0	0	1	0	0	0 0	0	0	0
	M_24	18	3	6	1	1 0	0 0	0	0	0	() 1	(12	0	2	2 0	0	0	0	1	0	0	0 0	0	0	, 0
Alb Alb <td>M_25</td> <td>8</td> <td>3</td> <td>5</td> <td>1</td> <td>1 0</td> <td>0 0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>2</td> <td>2 3</td> <td>(</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0 0</td> <td>0 0</td> <td>0</td> <td>1</td> <td>0</td> <td>C</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	M_25	8	3	5	1	1 0	0 0	0 0	0	0	2	2 3	(0 0	0	0	0 0	0 0	0 0	0	1	0	C	0 0	0	0	0
1 1 5 1 0	M_27	9	9	7	1	2 0) 1	0	0	0		1 2	(0 0	1	0	0 0	0	0	0	1	0	0	0 0	0	0	0
	M_29	15	5	7	1 :	2 0	0 0	0 0	0	0	() 1	(0 7	1	2	2 0	0 0	0 0	0	1	0	C	0 0	0	0	0
	M_31	9	9 (6	1 :	2 0	0 0	0 0	0	0		1 2		0	0	2	2 0	0	0	v	1	0		0 0	0	0	0
1.25 1.5 </td <td>M_51</td> <td>-</td> <td></td> <td>7</td> <td>1</td> <td>1 0</td> <td>0 0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>(</td> <td>0 1</td> <td>(</td> <td></td> <td></td> <td>2</td> <td>2 0</td> <td>0 0</td> <td></td> <td>v</td> <td>1</td> <td>, v</td> <td>, v</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	M_51	-		7	1	1 0	0 0	0 0	0	0	(0 1	(2	2 0	0 0		v	1	, v	, v	0 0	0	0	0
AB O S C	M_56	19	9	7	1 :	2 0		, ,	0	-	() 1	,	1	1	2	2 0	0	-	-	1	•		0 0	0	ů	, °
PAD C		7	7 (6	1	1 0			0	-			(0 1	0	0	0 0	0 0	0 0	0	1	-	-	0 0	0	0	0
		10	-	-	1				0	0				3	0	1	0		0 0	0	1	0			0	0	0
Q 0		15		D	1 /				0	0	(0	0				0	1	0			0	0	0
Image: state Image: state<		10		5	1	2 0			0	0					0	2				0	1				0	0	
if M. if M. <th< td=""><td>M 9</td><td>9</td><td></td><td>6</td><td>1</td><td>3 0</td><td>, ,</td><td>, 0</td><td>0</td><td>0</td><td></td><td></td><td>,</td><td>0</td><td>1</td><td>0</td><td></td><td></td><td></td><td>0</td><td>1</td><td>0</td><td></td><td></td><td>0</td><td>0</td><td>0</td></th<>	M 9	9		6	1	3 0	, ,	, 0	0	0			,	0	1	0				0	1	0			0	0	0
interpresent interpresent<	M_9A	7	7	6	1	1 0	,	,	0	· · ·			,	°	1	0) 0		•	0	1	0			0	v	, ₀
MC MC<	M_9B	7	7	6	1	1 0) 0	0 0	0	0		1 2	(0 0	1	0	0 0	0	0 0	0	1	0		0 0	0	0	0
	M_9C	8	3 (6	1 :	3 0	0 0	0 0	0	0		1 1	(0 0	1	0	0 0	0	0	0	1	0	0	0 0	0	0	0
MC.1 I	M_9D	6	6 (6	1	1 0	0 0	0 0	0	0	-	1 1	(0 0	1	0	0 0	0 0	0 0	0	1	0	C	0 0	0	0	0
MC.1 I	MIC_E1A	5	5 4	4	1	1 0	0 0	0 0	0	0	() 2	(0 0	0	0	0 0	0	0	0	1	0	0	0 0	0	0	0
KAA S 4 1 0	MIC_E1B	5	5 4	4	1	1 0	0 0	0 0	0	0	() 2	(0 0	0	0	0 0	0 0	0	ő	1	0	0	0 0	0	0	0
MAB S	MK_1			6	1	1 0	-	. ÷	0	ů	,	0 1			0	0) 1	0		-	1	3	, ,	°	0	v	, ,
MX_4 4 4 4 4 4 5 1 0 0 1 0	MK_2A	0	,	4	1	1 0	°	ů	0	ů	,) 2			0	0	, 0	0 0		-	1	-	-	°	0	•	, °
M.4 0		5	o	4	1	1 0	-		0	-		<u>ן 2</u>			0	v	9	-	-	-	1	-	-		v	-	
MX-1 6 0		4	+	+	1		, · · · ·	•	0	· · ·	· · · · · ·	<u>1</u>	-	-	0	, v	,	· · · ·	-	-		-	-	,	0	-	
ME.AB 5 1 1 0	MK 7	4	*	1	1 0	2 0	-	. ÷	0	-					0	, v	,	-	ţ	÷	1	-	-		0	-	. <u> </u>
MA:B		0 ۹	3	5	1	1 0		-	0						0	0) 0				1) 0	0	-	-
MORE1	MK_8B	5	5	4	1	1 0	-		0	•	() 2	-	-	0	0) 0	0	-	-	1	ů) 0	0	0	0
MORENT 7 5 1 2 0 <td>MOR_E1</td> <td>8</td> <td>3 (</td> <td>6</td> <td>1</td> <td>2 0</td> <td>-</td> <td></td> <td>0</td> <td>0</td> <td>2</td> <td>2 1</td> <td>-</td> <td>-</td> <td>0</td> <td>1</td> <td>0</td> <td>0 O</td> <td>-</td> <td>-</td> <td>1</td> <td>Ū 0</td> <td></td> <td>0 0</td> <td>0</td> <td>0</td> <td>, 0</td>	MOR_E1	8	3 (6	1	2 0	-		0	0	2	2 1	-	-	0	1	0	0 O	-	-	1	Ū 0		0 0	0	0	, 0
MOR_E11 O </td <td>MOR_E10</td> <td>7</td> <td>7</td> <td>5</td> <td>1</td> <td>2 0</td> <td>0 0</td> <td>) 0</td> <td>0</td> <td>0</td> <td>-</td> <td>1 2</td> <td>(</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td></td> <td>0 0</td> <td>0</td> <td>0</td> <td>, 0</td>	MOR_E10	7	7	5	1	2 0	0 0) 0	0	0	-	1 2	(0 0	0	0	0 0	0	0	0	1	0		0 0	0	0	, 0
MOREA 9 6 1 2 0 0 1 0 0 0 1 0 <td>MOR_E11</td> <td>6</td> <td>6</td> <td>5</td> <td>1</td> <td>1 0</td> <td>0 0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>2</td> <td>2 1</td> <td>(</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	MOR_E11	6	6	5	1	1 0	0 0	0 0	0	0	2	2 1	(0 0	0	0	0 0	0	0 0	0	1	0	0	0 0	0	0	0
MPLE4 9 6 1 2 0 0 0 2 2 0 1 0 <td>MOR_E12</td> <td>8</td> <td>3</td> <td>5</td> <td>1</td> <td>1 0</td> <td>00</td> <td>0 0</td> <td>0</td> <td>0</td> <td>2</td> <td>2 3</td> <td>(</td> <td>00</td> <td>0</td> <td>0</td> <td>0 0</td> <td>00</td> <td>00</td> <td>0</td> <td>1</td> <td>0</td> <td>0 0</td> <td>00</td> <td>0</td> <td>0</td> <td>0</td>	MOR_E12	8	3	5	1	1 0	00	0 0	0	0	2	2 3	(00	0	0	0 0	00	00	0	1	0	0 0	00	0	0	0
MORES 11 6 1 3 0 <td>MOR_E3</td> <td>8</td> <td>3 (</td> <td>6</td> <td>1 :</td> <td>2 0</td> <td>0 0</td> <td></td> <td>•</td> <td>0</td> <td></td> <td>1 2</td> <td>-</td> <td>-</td> <td>0</td> <td>1</td> <td>0</td> <td>0 0</td> <td>-</td> <td>-</td> <td>1</td> <td></td> <td></td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	MOR_E3	8	3 (6	1 :	2 0	0 0		•	0		1 2	-	-	0	1	0	0 0	-	-	1			0 0	0	0	0
ADR E6 8 5 1 1 0 <td>MOR_E4</td> <td>•</td> <td>,</td> <td>6</td> <td>1 :</td> <td>2 0</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td>2 2</td> <td></td> <td></td> <td>0</td> <td>1</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>1</td> <td></td> <td></td> <td></td> <td>0</td> <td>-</td> <td></td>	MOR_E4	•	,	6	1 :	2 0	-	-		-		2 2			0	1		-	-	-	1				0	-	
ADR_E7 9 5 1 2 0 <td>MOR_E5</td> <td>11</td> <td>1 (</td> <td>6</td> <td>1 :</td> <td>3 0</td> <td></td> <td>-</td> <td>0</td> <td></td> <td>2</td> <td>2 3</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>-</td> <td>-</td> <td>1</td> <td></td> <td></td> <td></td> <td>0</td> <td>-</td> <td></td>	MOR_E5	11	1 (6	1 :	3 0		-	0		2	2 3			0	0	0 0	0	-	-	1				0	-	
ADR_E8 10 5 1 3 0 0 2 3 0 </td <td>MOR_E6</td> <td>8</td> <td>3</td> <td>5</td> <td>1</td> <td>1 0</td> <td></td> <td>÷.</td> <td>0</td> <td>•</td> <td>2</td> <td>2 3</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>ţ</td> <td>÷</td> <td>1</td> <td>ů</td> <td></td> <td>0 0</td> <td>0</td> <td>v</td> <td>, ,</td>	MOR_E6	8	3	5	1	1 0		÷.	0	•	2	2 3			0	0	0	0 0	ţ	÷	1	ů		0 0	0	v	, ,
ACR_EAA 6 5 1 1 0 0 0 1 0 </td <td></td> <td>9</td> <td>9</td> <td>-</td> <td>1 2</td> <td>2 0</td> <td>-</td> <td></td> <td>0</td> <td>· · ·</td> <td>2</td> <td>2 3</td> <td>-</td> <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>-</td> <td>0</td> <td>, ·</td> <td></td> <td>1</td> <td>0</td> <td>0</td> <td>, 0</td>		9	9	-	1 2	2 0	-		0	· · ·	2	2 3	-	-	0	0	0	0	-	-	0	, ·		1	0	0	, 0
MAREPB 6 5 1 2 0 <td>MOR_E8</td> <td>-</td> <td>-</td> <td>5</td> <td>1</td> <td>3 0</td> <td>, °</td> <td>•</td> <td>0</td> <td>Ů</td> <td></td> <td>4 3</td> <td></td> <td>•</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>ţ</td> <td>÷</td> <td>1</td> <td>0</td> <td></td> <td>, 0</td> <td>0</td> <td>•</td> <td>, °</td>	MOR_E8	-	-	5	1	3 0	, °	•	0	Ů		4 3		•	0	0			ţ	÷	1	0		, 0	0	•	, °
12A 2B 5 2 0 0 0 0 0 2 0 20 1 0 <td></td> <td>6</td> <td></td> <td>5</td> <td>1</td> <td>2 ^</td> <td>-</td> <td>. ÷</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>v</td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>0</td> <td>-</td> <td></td>		6		5	1	2 ^	-	. ÷	0						0	v	9					-	-		0	-	
128 2 8 7 1 0 1 0 0 1 0		6		5	2		, · · · ·	•	0	•			-	-	1	0	, 0		-	-	1	-	-	°	0	-	. <u> </u>
1 1 0 0 0 1 0	N 12R			8	7	1 0	,	•	•	· · ·	· · · · · ·		-		1	0	, ,	, ·		-	1	-	-	,	v	v	0
13A 8 5 3 0 0 0 0 1 1 2 0	N 12C	22		5	2	1 0		Ţ	0	-) 1	-	-	۱ ۱	-		-			1	-	-		0	-	. <u> </u>
4 1 0 0 0 0 0 1 0	N_13A	8	3	5	3 (0 0		-	0	-) 1	1	1 2	n 0	0 0) 0		-	-	1	-	-		0	-	
y 0 1 2 0 0 0 0 1 3 0	N_13B	8	3	4	1 0	0 0	-		0	0	() 1	() 5	0	0) 0		-	-	1	-	-) 0	0	0	0
N_14A 8 5 2 0 0 0 0 1 1 0 3 0 <td>N_13C</td> <td>9</td> <td>9</td> <td>6</td> <td>1</td> <td>2 0</td> <td>, °</td> <td>ů</td> <td>0</td> <td>0</td> <td></td> <td>) 1</td> <td>1</td> <td>1 3</td> <td>0</td> <td>0</td> <td>0 0</td> <td></td> <td>°</td> <td>ů</td> <td>1</td> <td>0</td> <td></td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	N_13C	9	9	6	1	2 0	, °	ů	0	0) 1	1	1 3	0	0	0 0		°	ů	1	0		0 0	0	0	0
14B 6 5 2 0 0 0 0 1 1 0 0 1 0	N_14A	8	3	5	2 (0 0	0 0	0 0	0	0	-	1 1	(0 3	0	0	0 0	0	0	0	1	0		0 0	0	0	0
4 4 1 0 0 0 0 1 1 0	N_14B	6	6	5	2	0 0	0 0	0	0	0	-	1 1		-	1	0	0 0	0	0	0	1	0	0	0 0	0	0	, 0
A 6 5 1 0 0 0 0 1 2 0 1 0	N_15	4	4	4	1 (0 0	0 0	0 0	0	0	· ·	1 1	(0 0	0	0	0 0	00	0 0	0	1	0	0 0	0 0	0	0	0
	N_1A	6	6	5	1 (0 0	0 0	. ÷	0	0		1 2			1	0	0 0	0 0	ţ	÷	1	-	-	0 0	0	•	
<u>12 18 7 5 1 0 0 0 0 1 2 0 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>	N_1B	•	-	7	1			-	-			1 2			1	-		-			1				-	-	-
	N_2	18	3	7	5	1 0	0 0	0 0	0	0		1 2	(7 7	1	0	0 0	0 0	0 0	0	1	0	0 0	0 0	0	0	0

				No buffor zo	one applicable	100m buffer						200m buffer			500m buffer				1000m	1 buffer			2000m buffer			
	Number of	Number of	Aquifer Maps -		Groundwater					Toom buller		Ancient or		200iii builei			Julie Duller				100011	Dunei			2000in buner	
	individual	feature	Bedrock	Superficial	Source							Semi-					World									
	features within	categories	Deposit	Deposits		WFD			Historic			Natural	Listed	Water	Scheduled		Heritage	Registered	National			National				
CDC_Ref	buffer	within buffer	Designation	Designation	Zone	Classification	LNR	Greenbelt		Landfill site	ALC	Woodland	Buildings		Monument	Gardens	Sites	Battlefield	Trails	AONB		Park	SSSI	Ramsar		SPA
N_5A	20		5	1 1	0		0 0	0	0	v	1	() 16		0 0	0 0	0 0	0	0	1	0	, i	0 0	0	0	Ű
N_5B	22	2	5	1 1	0		0 0	0	0	, v	1	(18	-		0		0	0	1	0	· · · ·		0	0	Ű
N_8 NOR E1	4		3	2 0		1	0 0	0	0	-	1	1						0	0	1	0	0		0	0	0
NOR E2	23		5 5	2 0				0	0	0	9		1 17	7 1				0	0	1	0			0	0	0
NOR E3A	6	3	5	1 0	0			0	0	1	2) 1	0			0	0	1	0	0		0	0	0
NOR E3B	8	3	7	1 1	0		1 0	0	0	1	2	2 () 1	0		0	0	0	1	0	C C		0	0	0
RUR E10	4	L .	4 1	1 1	0		0 0	0	0	0	1	() (0 0) 0	0 0	0	0	0	1	0	C) 0	0	0	0
RUR_E12	8	3	6	1 1	2	2	0 0	0	0	1	2	2 (0 0	0 0) 0	0 0	0 0	0	0	0	0	C) 1	0	0	0
RUR_E13	15	5	7 1	1 2	2 3	;	0 0	0	1	2	3	3 (0 0	0 0	0	0 0	0	0	0	0	0	C) 3	0	0	0
RUR_E14	21	1	1 5	3 2	2 3		0 0	0	1	2	3	3 () 1	1 1	1	0	0 0	0	0	0	0	C	3	0	1	0
RUR_E15	16	·	7 2	2 2	2 3	. (0 0	0	1	2	3	3 (0 0	0 0	0 0	0 0	0 0	0	0	0	0	0) 3	0	0	0
RUR_E16	3	3	3 1	1 0	0 0) (0 0	0	0	0	1	(0 0	0 0	0 0	0 0	0 0	0	0	1	0	C	0 0	0	0	0
RUR_E17	4	-	4 1	1 0	0 0	· · ·	0 0	0	0	0	1	(0 0	0 0	0 0	0 0	0	0	1	0	0	1	0	0	0
RUR_E18 RUR E19	15		7	7 1	2		0 0	0	0	-	1					0 0		0	0	1	0	U U		0	0	0
RUR_ET9	16	,	0 0	3 0	1		0 0	0	0	-					1			0	0	1	0			0	1	0
S 1	12		8	1 0	1			0	0	v	1	. () 2) 3	1		0	0	1	0	0		0	0	0
S 14	7	7	4 4	4 0) 0		0 0	0	0	-	1	1 0) () 1			0	0	1	0	0) 0	0	0	0
S_2	18	3	7	1 0	0		0 0	0	0	-	1	() 10	, °	2	2 1	0	0	0	1	0	•	0	0	0	0
S_20	7	'	5 2	2 0	0		0 0	0	0	2	1	0) (0 0) 1	0	0	0	0	1	0	0	0	0	0	0
S_22A	6	6	5 2	20	00		0 0	0	0	1	1	(0 0	0 0) 1	0	00	0	0	1	0	0	0	0	0	0
S_22B	5	5	3 3	3 0	0		0 0	0	0	0	1	(0 0	0 0	0	0 0	0	0	0	1	0	0	0	0	0	0
S_34A	ç	,	7 2	2 0) 1		0 0	0	0	<u> </u>	1	(0 0	0 0) 1	1	0	0	0	1	0	0	0 0	0	0	0
S_34B	g	9	7 2	2 0	1		0 0	0	0		1	(0 0	0 0	1	1	0	0	0	1	0	· · · ·	0 0	0	0	÷
S_39	8	3	7	1 0	0 0		0 0	0	0		1	() 1	0) 2	2 1	0	0	0	1	0	, i	0 0	0	0	Ű
S_43	24		/		0			0	0	-		(16			2 1	0	0	0	1	0			0	0	Ű
S_46 S 47	18	2	7	1 0	0	1 .	0 0	0	0				0 10			1	0	0	0	1	0	0		0	0	0
<u>3_47</u> S 48	11		8	3 0	1	1		0	0	2	1	(0	0	0	1	0			0	0	0
S 49	6	3	5	2 0) 0			0	0	1	1	() 2			0	0	1	0	0		0	0	0
S 50	4	1	3 2	2 0	0			0	0	0	1	(0	0	1	0	0		0	0	0
S 51	8	3	7 2	2 0) 1		0 0	0	0	1	1	(0 0) 1	1	0	0	0	1	0	C	0 0	0	0	0
S 52	11	1	8 3	3 0) 1	(0 0	0	0	1	1	() 1	1 0) 2	2 1	0	0	0	1	0	C) 0	0	0	0
S_53	7	7	7 1	1 0) 1		0 0	0	0	1	1	(0 0	0 0) 1	1	0	0	0	1	0	C	0 0	0	0	0
S_54	14	L I	6 8	в О	0 0)	0 0	0	0	2	1	() 1	1 0) 1	0	0	0	0	1	0	C	0 0	0	0	0
S_55	14	ł	6 3	3 0	0 0) (0 0	0	0	1	1	(6	6 0) 2	2 0	0 0	0	0	1	0	C	0 0	0	0	0
S_57	8	3	5 3	3 0	0 0		0 0	0	0	1	1	(0 0	0 0) 2	2 0	0 0	0	0	1	0	0	0 0	0	0	0
S_8A	11		7 1	1 0	0 0) (0 0	0	0	2	1	() 3	3 0) 2	2 1	0	0	0	1	0	C	0 0	0	0	0
SC_11	18		8 1	1 1	2		0 0	0	0	v	3	8 (8	3 1	1	0	0 0	0	0	0	0	0	1	0	0	0
SC_12	13		9	1 1	2		1 0	0	2	2	2			1	1	0		0	0	0	0	0		0	0	0
SC_13A SC 19	12		8	1 1	2			0	0	2	3		20		1			0	0	0	0	0		0	0	0
SC_20	28		7	3 1	1		1 0	0	0	, v	1			1	1			0	0	0	0			0	0	Ű
SC 21	5		3 3	3 0) 1			0	0	, v	1	(0	0	0	0	0		0	0	0
SC_22	11		7	1 2	2 2	2	0 0	0	0	1	2	2 () 1	0	0 0	0	0	0	0	0	C	2	0	0	0
SC_23	10)	8	1 1	2	: (0 0	0	0	1	1	() 1	1 0) 1	0	0	0	0	0	0	C) 2	0	0	0
SC_27	16	6	7 2	2 2	2 3	;	0 0	0	1	2	3	3 (0 0	0 0	0	0 0	0	0	0	0	0	C) 3	0	0	0
SC_28	15		7 2	2 1	3		0 0	0	1	-	,		0 0		0 0	0 0	0 0	0	-	0	0	-	-	0	0	-
SC_29	15		7 1	1 2	2 3		0 0	0	1			, 	,		0 0			0	-	0	0	-	-	0	0	
SC_9	27		7	1 2	2 2		0 0	0	0	-	2) 17		2	2 0		0	ů	0	0	-	•	0	0	-
SC_E1 SC_E2	13		7 3 0 1	3 2	2 2		0 0	0	0	÷	2	-		-	1			0	-	0	0	-		0	0	-
SC_E2 SD_1	15		6	3 0	2			0	3			. (, 1 , ^	1		-	0	-	0	0			0	0	
SD_1 SD_10	10	3	5	3 0			0 0	0	2) 1		1			0	ů	0	0	, i i i i i i i i i i i i i i i i i i i		0	0	-
SD_11	9	9	6 3	3 1	0		0 0	0	0	-	1	() 2	2 0	1	0		0	, v	0	0	•	0	0	0	-
SD_12	10)	6	3 0) 1		0 0	0	2	1	1) 2	2 0	0	0 0	0 O	0	0	0	0	0	0	0	0	0
SD_13	6	6	4 2	20	00		0 0	0	0		2	2 () 1	1 0	0	0 0	0	0	0	0	0	C	0 0	0	0	0
SD_14	ç		6 2	2 0	0 0)	0 0	0	1	2	2	2 (1	1 0) 1	0	-	0	0	0	0	C	0 0	0	0	
SD_2	6		6 1	1 1	0		0 0	0	1		1	() 1	0		0		0	÷	0	0	-	-	-	0	
SD_3	5		4 2	2 0	1		0 0	0	0		1	() 1	0	0 0	3	-	0	-	0	0			0	0	-
SD_4	10		5	1 1	0		0 0	0	0		1	() 6	<i>i</i> 0	1	0		0	-	0	0	-	-	0	0	
SD_5	6) -	4 3	3 1	1		0 0	0	0	÷						0		0	-	0	0	-	0	0	0	-
SD_6 SD_8	7		4 3	3 0 1 ^	1		0 0	0	0	-								0	0	0	0	0		0	0	•
SD_8 SD_9A	5		5 4	3 0			0 0	0	1	-	2			0			Ů	0	0	0	0		3	0	0	3
SD_9A SD_9B	11		6	3 0		· · · ·	0 0	0	1		2) 3	3 0		0		0	ů	n 0	0	-	-	0	0	-
SD_9D SD_9C	14		6	3 0) 1		0 0	0	2		2) 4	-			-	•	ů	0	0	-	-	0	0	
SD_9D	g		5 3	3 0) 1		0 0	0	1		-	`) (· · · · ·		•	0	, v	0	0	-		0	0	-
SID_E1	6	6	4	30	0		0 0	0	0	0	1) 1	1 0) 1	0	0	0	0	0	0	-	-	0	0	0
SID_E2	8	3	5 2	2 0	0 0		0 0	0	1	2	2	2 () 1	0	0 0	0 0	0 0	0	0	0	0	C	0 0	0	0	0
SID_E3	10		5 1	1 1	0		0 0	0	0	0	1	(6	6 0	1	0	0	0	0	0	0	0	0	0	0	0
STW_E1	6		5 2	2 0	0 0		0 0	0	0	-	1	(0 0	0 0) 1	0	0 0	0	ů	1	0	•	•	0	0	-
STW_E2	11		8 3	3 0) 1		0 0	0	0		1	() 1	1 0	_		0	0	-	1	0	-		0	0	-
STW_E3	6	6	5 2	2 0	0		0 0	0	0		1	(, ,			0		0	-	1	0	-	-	0	0	-
STW_E4	4	۱ ۱	3 2	2 0	0 0		0 0	0	0	-	1	(,		, ,	· · · ·	0	ů	1	0	-		0	0	
STW_E5	11		8 3	3 0 1 ^	1		0 0	0	0	-		() 1) (4 1	0	0	-	1	0	-	-	0	0	-
STW_E6 STW_E7	7		5		1		0 0 0 0	0	0							1		0	-	1	0	-		0	0	-
STW_E7 STW_E9	9		7		, U		0 0	0	0		4							0		1	0			0	0	
<u> </u>		1	· 4	-1 0	п I	1	- U	0	0	2	· · · · ·	l (- L	1 0	'I I	1	. 0	1 0	0	1 1	1 0	1 0	. 0	0	0	0

			No buffer zone applicable				Ι			100m buffer	r			200m buffe	r		500m buffe	r			1000)m buffer		1	2000m but	fer
		Number of	Aquifer Maps	- Aquifer Maps	- Groundwater							Ancient or														
	individual	feature	Bedrock	Superficial	Source	WED			Lliataria			Semi-	Linted	Water	Cabadulad	Dauka and	World	Deviatored	National			National				
CDC_Ref	features within buffer	categories within buffer	Deposit Designation	Deposits Designation		WFD Classification	INB		Historic landfill	Landfill site		Natural Woodland			Scheduled Monument		Sites	Registered Battlefield		AONB	NNR	National Park	SSSI	Ramsar	SAC	SPA
T 1	7	7	6	1	0 2	2 0	0	0	0		1	0	0 0	C	0 0) () (0 () ()	1	0	0	1	0	0
	34	1	7	1	0 2	2 0	0	0	0	2	2 1	0	26	C) 1	() (0 () ()	1	0	0	0	0	0
T_22	41	1	7	1	0 2	2 0	0	0	0	2	2 1	0) 33	C) 1	() (0 () ()	1	0	0	0	0	0
T_26	8	3	6	1	0 2	2 0	0	0	0	1	2	0	0 0	1	0) () (0 0	0 0)	1	0	0	0	0	0
T_28	10		7	2	0 2	2 0	0	0	0	2	2 1	0) 1	C) 1	0) (0 (0 0)	1	0	0	0	0	0
T_31A	9	9	6	1	0 2	2 0	0	0	0	2	2 2	0	0 0	C	0 0) () (0 () ()	1	0	0	1	0	0
T_31B T 31C	11	3	7	1	1 2		0	0	0	1	1	0	0 0	0)	1	0	0	1	0	0
T 34	11		7 0	2	1 2		0	0	0	2	2 2	0	0 0								1	0	0	0	0	0
T_34C	12	2	6	3	1 2		0	0	0	1	1	0)	1	0	0	0	0	0
T 34D	10	2	6	3	0 2	2 0	0	0	0	2	2 1	0	0 0	0) 1	, ()	1	0	0	0	0	0
T 35	9	9	6	2	0 2	2 0	0	0	0	2	2 1	0	0 0	C) 0) () (0 0)	1	0	0	1	0	0
T_38	11	1	7	1	0 2	2 0	0	0	1	2	2 3	0	0 0	1	0) () (0 () ()	1	0	0	0	0	0
T_39	7	7	6	1	0 2	2 0	0	0	0	1	1	0	0 0	C) 1	() (0 0	0 0)	1	0	0	0	0	0
T_40	11	1	7	2	0 2	2 0	0	0	0	2	2 2	0) 1	C) 1	0) (0 0	0 0)	1	0	0	0	0	0
T_45	12		7	4	1 2	2 0	0	0	0	2	2 1	0	0 0	C	0 0) () (0 0	0 0)	1	0	0	1	0	0
T_50	31	1	8	2	0 2	2 0	0	0	0	1	1	0	22	1	1	0) (0 (0 0)	1	0	0	0	0	0
T_51	8	3	5	2	0 2	2 0	0	0	0	1	2	0	0	C	0) (0 ()	1	0	0	0	0	0
T_52 T_55	13	5	8 F	3			0	0	1	2	2	0	0 0	1) ()				1	0	0	0	0	0
T_55 T_57	12		7	1			0	0	0	2	1	0	, <u> </u>							, 	1	0	0	0	0	0
T_57 T_61	12	7	5	1	0 2		0	0	0	1	. I		, 4) ^							,	1	0	0	0	0	0
T_62	13	3	8	2	0 2	2 0	n 0	0	0 0	9	2 1	n 1) 3	1	1					,)	1	0	0	0	0	0
T_63A	8	3	5	2	0 2	2 0	0	0	0	1	2	0	0 0	0)	1	0	0	0	0	0
T_63B	8	3	5	2	0 2	2 0	0	0	0	1	2	0	0 0	C) 0) () (0 () ()	1	0	0	0	0	0
T_63C	9	9	5	2	0 2	2 0	0	0	0	2	2 2	0	0 0	C	0 0) () (0 (0 0)	1	0	0	0	0	0
T_64	27	7	8	1	0 2	2 0	0	0	0	1	1	0	19	1	1	0) (0 (0 0)	1	0	0	0	0	0
T_67	7	7	6	1	0 2	2 0	0	0	0	1	1	0	0 0	C) 1	0) (0 0	0 0)	1	0	0	0	0	0
T_70	9	9	6	2	0 2	2 0	0	0	0	2	2 1	0	0 0	C) 1	() (0 0	0 0)	1	0	0	0	0	0
T_71	11	1	7	2	0 2	2 0	0	0	0	2	2 2	0) 1	0) 1	0) ()	1	0	0	0	0	0
TET_E1 TET E2	8	3	5	2	0 2	2 0	0	0	0	1	2	0	0 0)	1	0	0	0	0	0
TET E4	9		5	1	0 2		0	0	0	1	2	0))	1	0	0	0	0	0
UR 2	7	7	4		0 2		0	0	0	2	> 2	0))	1	0	0	0	0	0
UR_3	7	7	4	2	0 0		0	0	0	2	2	0) 0	0)	1	0	0	0	0	0
UR E1	14	1	6	7	0 0) 1	0	0	0	2	2 2	0	0 0	1	0) () (0 0) ()	1	0	0	0	0	0
W_1A	12	2	4	1	0 0	0 0	0	0	0	C) 1	0) 9	C) 0) () (D (0 0)	1	0	0	0	0	0
W_1B	11	1	4	1	0 0	0 0	0	0	0	C) 1	0	8	C) 0) () (0 0	0 0)	1	0	0	0	0	0
W_4	3	3	3	1	0 0	0 0	0	0	0	C) 1	0	0 0	C	0 0) () (0 0	0 0)	1	0	0	0	0	0
W_5	4	4 :	3	2	0 0	0 0	0	0	0	C) 1	0	0 0	C	0 0) () (0 0	0 0)	1	0	0	0	0	0
W_6	9	9	4	1	0 0	0 0	0	0	0	0	0 1	0	6	C	0 0) () (0 0)	1	0	0	0	0	0
W_7A	3	3	3	1	0 0		0	0	0	0	1	0		0)	1	0	0	0	0	0
W_7B W 8A	3	3	3	1			0	0	0			0									1	0	0	0	0	0
W_8A W_8B	3	4	3	2			0	0	0) 1) 0)	1	0	0	0	0	0
W_8C	5	5	3	2	0 0		0	0	0	0) 2	0) 0	с с) n) () ()	1	0	0	0	0	0
W_9	3	3	3	1	0 0	0	0	0	0	0) 1	0	0 0	0)	1	0	0	0	0	0
WIL_E1A	9	9	4	1	0 0	00	0	0	0	0	1	0	6	0	00) () (0 0	0 0)	1	0	0	0	0	0
WIL_E1B	3	3	3		0 0	0 0	0	0	ů) 1	0		-	0) () (о (0 0)	1	0	0	0	0	0
WIL_E1C	3	3	5		0 0	, °	0	0	ů		, 1	0	°	-	0 0) (· ·	0 (,		0	0	0	0	0
WPP1	386			34	7 0		0	ů		1		0				1		0 (, 		-	0	•	0	0
WPP10	12		•	5	0 0		0	0	-			0	°		0) (, , , , , , , , , , , , , , , , , , ,		, .		·	•	0	0	0	0
WPP11	40	-	•	2	1 0	,	•	0	-	-	2	0							,			•	0	0	0	0
WPP12 WPP13	126			3	2 4	+ 1	0	0		1	1	1	1 101 0 5		0					,	1	0	0	0	0	0
WPP13 WPP14	24			5 1	<u>।</u> ३ व		0	0	-	. 2	. 1 . ^	0) 5) 10		1					,)	0	0	0	0	0	1
WPP15	136		0	2	8 0) 1	. 0 . 0	0	v	2	2 3	n 1) 113		2 3					,)	1	0	0	1	0	0
WPP16	126		9	2	7 3	3 1	0	0	0	0	3	0	113		1)	0	0	0	1	0	0
WPP17	31		8	6	0 2	2 0	0	0	-	-	2 1	0			0) 1		-	0	0	2	0	0
WPP18	15		8	4	1 1	0	0	0	-		1	0) 1	() (0 0	0 0			0	0	0	0	0
WPP2	78		1	3	3 2	2 2	0	0	3	2	2 3	0	54	2	2 2	2 () (0 (0 0			0	0	2	0	0
WPP3	96			2	2 0) 1	0	0	0			1	84		0) () (0 (0 0)	1	0	0	0	0	0
WPP4	248			-	2 2	2 0	0	0	2	2	2 3	0) 222	1	2	2 () (р (0 0)	1	0	0	1	0	0
WPP5	227		9 1	1	3 0) 1	0	0	0	C	3	0	205	1	1	() (0 () 1		1	0	0	0	0	0
WPP6	115	5	9	1	7 0	1	0	0	0	2	2 3	0	96	1	3) () (0 (0 0)	1	0	0	0	0	0
WPP7	121			2	4 0) 1	0	0	0		-	0	100		2	2 1	1 (0 0	, ,		0	0	0	1	0	0
WPP8	135		8		0 1	0	-	0	-	1		0				8 1		0 (-)		-	0	-	0	0
WPP9	28	3	4	2	0 0	0 0	0	0	0	0	1 1	0	24	C	0) () (0 0	0 0)	1	0	0	0	0	0