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independent estimate of internal variability in isolation (derived from model 
control simulations as described above). While we focus here on contributions to 
the spread of our probabilistic projections, we stress that each of the elements of 
the methodology considered in Figure A2.5 (apart from internal variability) can 
also shift the distributions, thus affecting aspects such as the mean, median or 
mode. For example adding carbon cycle feedbacks increases the mean projected 
warming (as well as adding uncertainty), while the mean reduction in summer 
precipitation projected over much of the UK is ameliorated somewhat by the 
inclusion of the uncertainty associated with structural model errors, since our 
projections of the changes simulated by other climate models tend to be too dry.

Figure A2.6 repeats the analysis of Figure A2.5 for an earlier projection period, 
2010–2039. This demonstrates the changing role of different contributions to 
uncertainty at different lead times. In particular, internal variability increases in 
significance, becoming the largest contribution in three of the four cases. The 
other components are generally smaller than at 2070–2099, though parameter 
un-certainty still contributes at least 20% in all cases.

Downscaling uncertainties
The effect of downscaling, and its accompanying uncertainty, varies greatly 
with climate variable, meaning period and location (e.g. Figure 3.11 in Section 
3.2.11), so cannot be characterised using a single typical example. We therefore 
show several examples of how uncertainties break down when downscaling 
is included. In UKCP09, uncertainties in downscaling are characterised by the 
variance of the residual errors found when regressing changes in the local 
target variable in our regional climate model simulations against changes in the 
same variable at a nearby grid point in the driving global model simulations 
(see Figures 3.9 and 3.10 and associated discussion). These residuals arise from 
uncertainty in the relationships between future changes simulated by the global 
and regional models, which in general can arise both from the systematic effects 
of variations in model physics, and also from internal variability at fine scales 
generated within the regional model domain. We do not attempt to diagnose 
the relative magnitudes of these two contributions here, as we do not possess the 
long unforced control simulations of the regional model that would be needed. 

The contribution of downscaling to the total uncertainty is shown in Figure 
A2.7, using examples derived from changes in winter precipitation for 2070–
2099 relative to 1961–1990 at several 25 km grid squares. This contribution is 
quantified by comparing the spread found in downscaled probabilistic projections 
when the residual variance is either included or excluded. The other uncertainty 
contributions are obtained as described in the discussion of Figures A2.5 and 
A2.6 above. At three of the featured locations the contribution of downscaling 
uncertainty is relatively small (less than 10%). In three further cases a larger but 
still secondary contribution is made to the total spread in the projections (in the 
range 12–19%). Downscaling uncertainties are modest where there is a strong 
relationship between the global and regional model changes, indicating that 
most of the total uncertainty arises from larger scale climate processes resolved in 
the global climate model simulations. However, downscaling uncertainty makes 
a large contribution at one of the featured locations (48%, over the Cairngorm 
mountains). This is a region where the relationship between changes in the 
regional and global models is weaker (Figure A2.7 cf. Figure 3.9), indicating 
that the localised precipitation anomalies are influenced strongly by fine scale 
variability generated within the regional model, and not so strongly (compared to 
other locations) by changes driven by larger scale processes resolved by the global 
model. A detailed examination of the mechanisms of downscaling uncertainty 
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Figure A2.7: Contributions to the 
uncertainty in winter precipitation 
changes for 2070–2099 relative to 
1961–1990, at selected 25 km grid squares. 
Contributions are calculated as in Figures 
A2.5 and A2.6, and also include that due 
to downscaling from global climate model 
grid squares to regional climate model 
grid squares (see text for details). 

is left to future work; however, a good example would be local enhancements 
or reductions in precipitation caused by the effects of mountains or coastlines. 
These local modifications vary substantially between the different members 
of our regional model ensemble in some regions, due partly to differences in 
the projected changes in the regional atmospheric circulation. The results of 
Figure A2.7 demonstrate that the contribution of downscaling uncertainty 
can vary significantly from region to region. The contribution also varies with 
future period, tending to be larger for relatively near-term projections (e.g. for 
2010–2039) compared with projections for the end of the coming century (not 
shown). This is because our metric of downscaling uncertainty does not (typically) 
increase proportionately as the forced response increases in the global model 
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(see Figures 3.9 and 3.10, noting the scatter of the changes about the regression 
lines), suggesting that much of it may arise from locally generated internal 
variability. Further examples will be given on the UKCP09 website (see http://
ukclimateprojections.defra.gov.uk). Finally, we note that our analysis relates 
specifically to uncertainties quantified by the downscaling strategy chosen for 
UKCP09, and does not consider potential additional uncertainties associated with 
the structural assumptions made in the approach (see Section 3.2.11).

A2.5 Summary

The UKCP09 probabilistic projections provide expressions of the relative 
likelihood of different future outcomes for 21st century climate, obtained by 
sampling uncertainties in physical and biogeochemical processes as represented 
in the current generation of climate models, and combining these with a set of 
observational constraints and expert judgements in order to provide estimates 
of the credibility of different outcomes conditioned on present knowledge. In 
this sense the resulting probabilities are effectively summary statements of the 
information from climate modelling and observations. However, they are also 
conditional on the choice of method and its associated assumptions. In this Annex 
we have explored the sensitivity of the results to reasonable variations in a few of 
our most important assumptions, and have shown that the projections are robust 
to them for several examples. These involved changes in 30-yr averages of surface 
temperature and precipitation in several regions of the world, and changes in a 
typical warmest day of summer over South East England (see Figures A2.1–A2.3). 

We also provided examples of how the total uncertainty expressed in the UKCP09 
projections is broken down into a number of distinct components arising from 
different aspects of the methodology. The component termed parameter 
uncertainty (dominated by uncertainties in atmospheric processes sampled 
in our perturbed physics ensemble simulations) generally provides the largest 
contribution. However, the other components (carbon cycle processes, internal 
variability, structural model uncertainties, timescaling and downscaling) all 
provide significant contributions as well, hence no single component dominates 
the total uncertainty. This important result reduces the extent to which an 
individual assumption (relevant to one specific component of uncertainty) is likely 
to affect the overall spread of outcomes found in the projections, thus helping to 
explain why they are found to be robust in the reported sensitivity tests. Despite 
this, it remains imperative that efforts should be made to reduce uncertainties 
in all of the categories considered here. In this context, we comment below 
on prospects for achieving this through future work (see also the discussion in 
Section 3.3).

• Internal variability in climate projections is inevitable, and to some extent
represents an irreducible component of uncertainty. However, recent results
suggest there is potential to predict some aspects of internal variability out
to a decade or more ahead, by initialising climate model projections using
estimates of current observed climate anomalies in the ocean (Smith et
al. 2007; Keenlyside et al. 2008), rather than the current practice of using
random initial states typical of pre-industrial conditions.

• Timescaling uncertainty could in principle be removed. This would require
future versions of our methodology to be based upon very large ensembles
of projections of time-varying climate change carried out using the model
configuration in which the atmosphere is coupled to a dynamical three-
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dimensional ocean module. This would remove the necessity to estimate the 
results of such an ensemble from simulations of the equilibrium response to 
doubled carbon dioxide carried out using a simple mixed layer representation 
of the ocean. In practice, prospects for achieving this will depend on the 
level of available computing resources relative to the cost of running future 
climate models.

• Parameter uncertainty can be reduced by developing better climate models.
This is a long term, ongoing task, to which significant resources are being
devoted in the Met Office Hadley Centre. An additional route is through
the development of improved observational constraints. This could be
achieved by developing metrics which test the ability of climate models to
simulate relevant physical processes in a more detailed manner (e.g. Williams
et al. 2005). More effective ensemble designs could also help, by reducing
errors associated with emulation of climate model results for parameter
combinations at which we lack a climate model simulation.

• Structural uncertainty could be reduced by a worldwide improvement in
the quality of climate models, assuming that such developments lead to a
narrowing of the spread of systematic biases found in different models. It is also
possible, however, that improvements in models could lead to a broadening
of structural uncertainty. This could happen, for example, if developments
in spatial resolution or in the parameterisation of physical processes were to
lead to the discovery that climate change feedbacks are more uncertain than
currently thought, because current models underestimate the potential role
of certain processes (see Annex 3).

• Carbon cycle uncertainty is a major source of uncertainty in projections
of globally averaged temperature, and hence on the UKCP09 projections,
through their links with global temperature. Improved understanding
and modelling of terrestrial and oceanic ecosystem processes would help
to reduce this component of uncertainty. In UKCP09 there is no formal or
comprehensive use of observations to constrain carbon cycle feedbacks
(though a simple metric based on historical global carbon cycle budgets is used
to rule out a small subset of the available model projections). Development
of a more sophisticated and comprehensive approach (such as the approach
taken in UKCP09 to constrain projections according to their representations
of physical climate system processes) could therefore also help to reduce
uncertainties associated with carbon cycle processes.

• Downscaling uncertainty consists of: (i) a combination of internal variability
generated at fine scales in regional climate model simulations (independent of
the larger scale information supplied by the driving global model simulations);
plus (ii) uncertainty in the component of the fine scale response controlled
by the global model inputs. In principle the need for a specific downscaling
strategy could be removed, by basing future projections entirely on global
climate model simulations run at the spatial resolution for which users
require projections. This would remove the component of uncertainty arising
from type (ii), and would subsume type (i) into the global model simulations.
In practice, however, this will not be feasible for the foreseeable future, so
we anticipate a continuing need for downscaling methods. Downscaling
uncertainties of type (ii) could potentially be reduced by investigating more
sophisticated regression techniques which allow the regional model changes
to be inferred more accurately from global model variables. Note also that
the UKCP09 method does not support the use of observations of fine-scale
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aspects of climate to constrain the detail added to the projections through 
downscaling (which could reduce the uncertainty if included), and also omits 
any consideration of structural errors associated with downscaling (which 
could increase the uncertainty). Addressing these limitations would require 
larger ensembles of regional climate model simulations, including some made 
using regional models from other modelling centres (e.g. Christensen et al. 
2007), and hence containing different structural assumptions from those 
employed in the perturbed physics ensemble of Met Office model variants. 

In Section 2 of this Annex we describe the nature of the assumptions involved in 
the UKCP09 methodology, recognising that some of these (as in any probabilistic 
climate projection method) cannot be tested, due to limitations of current 
knowledge or resources. It is important to note that the UKCP09 probabilistic 
projections are conditional upon these assumptions; however, there is scope for 
future work to address some of them. For instance, with extra computational 
resource the design of our ensembles of model projections can be improved to 
sample interactions at a regional level between uncertain processes in different 
modules of the Earth System. With this in mind, an ensemble of projections 
is currently being developed in which parameters controlling uncertain at-
mospheric, terrestrial ecosystem, sulphur cycle and ocean transport processes 
are perturbed simultaneously, in order to assess the extent to which neglect of 
interactions between (say) regional atmospheric and carbon cycle feedbacks 
could affect the projected changes.
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Annex 3: Strengths and  
weaknesses of climate models

In this annex we discuss some generic aspects of climate modelling, 

including strengths and weaknesses of climate models. These 

are illustrated by discussion of some of the recent hot topics in 

modelling, such as the ability of models to simulate modes of 

climate variability and phenomena such as atmospheric blocking 

(periods when high pressure dominates the weather and how 

they might impact the signal of climate change). While in no way 

comprehensive, it should give a flavour of the type of research 

which is ongoing in improving our ability to model, understand 

and predict climate change.

A3.1 What are climate models?

We can describe the climate system using mathematical equations derived from 
well established physical laws that capture the evolution of winds, temperatures, 
ocean currents, etc. Computers are used to solve the equations in order to resolve 
all the complex interactions between components and processes and produce 
predictions of future climate change (see Chapter 2, Box 2.1 for more information). 
The core computer code for the atmosphere component of the Met Office climate 
models is the same as that used to make daily predictions of weather.

The equations of climate are, in the case of the Met Office model, solved by 
dividing the world up on a grid which follows lines of longitude and latitude 
and extends above the surface of the Earth and below the oceans (see Figure  
2.4). Physical properties such as temperature, rainfall and winds evolve in time on 
this grid, and these short time scale variations are averaged together to produce 
climate averages (monthly means, for example). Because the time-variation of 
atmospheric and oceanic motions is chaotic, it is not possible to reproduce the 
exact time variation of the real-world weather and climate (it is chaotic behaviour 
which limits weather forecast accuracy to about a week). Rather the model is 
representative of one possible trajectory the system may take. This “uncertainty 
due to natural variability”, is one aspect of the uncertainty captured in the PDFs 
presented in this report.

Mat Collins, Simon Brown,  
Tim Hinton, and Tom Howard, 
Met Office Hadley Centre
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The size of the grid boxes is limited by the amount of computer power available. 
Halving the size of the grid boxes in the horizontal and vertical direction makes 
the model more than 10 times slower to run. A balance must be achieved 
between resolution and run-time to ensure that enough model experiments can 
be performed to cover a range of future possibilities. The resulting grid boxes in 
a global climate model are a few hundreds of kilometres wide in the horizontal. 
Even in the regional version of the climate model (RCM) they are 25 km, so they 
cannot resolve all the atmospheric motions and interactions in a single cloud 
which evolve on much smaller scales. For this reason, small-scale processes must 
be parameterised, i.e. the effect of the small-scale processes on the grid-box scale 
variables must be simplified in some way.

The critical aspect for climate prediction is that many of the physical processes that 
are parameterised in climate models are also involved in the physical feedbacks 
which determine the effect of increasing greenhouse gases on climate, and set 
some of the regional aspects of climate change. Also important are interactions 
between the parameterised processes and the coarsely resolved dynamical 
motions. Parameterisations are necessarily simplified estimates of how the real-
world works; hence there is inherent uncertainty in the modelling approach. In 
UKCP09 we systematically explore these uncertainties by varying parameters in 
the Met Office Hadley Centre climate model and include information from other 
climate models in order to quantify the uncertainty in climate predictions arising 
from parameterised processes.

A3.2 Some basic assumptions and common misconceptions in 
climate modelling

Critical examination of the performance of climate models, leading to revision 
and improvement of the models, is a necessary and ongoing activity within 
climate modelling (see below). Nevertheless, it is worth stating some the inherent 
features of all models.

1. Climate models are based on fundamental physical laws (at the very basic
level, for example, Newton’s third law of motion) expressed in terms of
mathematical equations. They are not, as in some prediction endeavours,
statistical fits to past observations.

2. Each component of a model is thoroughly tested; often using data from field
experiments or dedicated process models representing, for example, the
detailed structure of a cloud. Models and their components are subject to
scientific peer review.

3. In short-term prediction areas (weather forecasting, for example) model
predictions can be validated or verified against a large sample of past cases.
In long-term climate prediction (for example, 50 yr into the future), direct
verification of this type is impossible. However the suitability of models
as tools for long-term prediction can be established, to some degree, by
assessing their ability to pass a range of tests of their physical credibility,
including replication of recent climate statistics, historical changes in climate
(see Figure A3.1, opposite), or performance in shorter-term predictions of
weather for days and weeks into the future and in making predictions of
climate on monthly and seasonal time scales.

4. Models cannot be adjusted to give any answer a climate modeller might
wish to get about climate change. The complexity of the system precludes
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this. Many features of the past and future climate produced by models, for 
example, the climate sensitivity — the global mean temperature change 
for a doubling of CO2 — could not have been predicted or somehow set 
when the model was put together. During model development it is the case 
that optimisation occurs to make the model’s fields best fit observations of 
present-day climate. However, this is often somewhat ad hoc, and only in the 
case of some reduced complexity models has it been attempted systematically. 

In the UKCP09 methodology, ensembles of simulations of variants of the Met 
Office model, have been used to quantify physical relationships between 
aspects of historical model performance and simulated future changes. That 
is, to identify the observational tests, in terms of different mean-climate 
variables and trends, which are most strongly related to the projection of 
future climate change. These relationships are then be used to determine 
weights which calibrate the relative contribution of different ensemble 
members when quantifying uncertainties in predicted future changes. The 
weights are set according to the strengths of correlations between the 
simulated values of observable historical variables, and non-observable future 
variables. The use of the perturbed physics approach allows, in some sense, the  
de-tuning of the model in order that the fit with observations, which may 
have been used during the model development phase, may then be used 
in the weighting scheme (describe in more detail in Chapter 3 and Annex 2). 
This ameliorates the impact of double counting the observations, i.e. using the 
observations to first tune the model and then using them again in the weighting 
scheme, which may over-constrain the predictions.

Models will never be able to exactly reproduce the real climate system; nevertheless 
there is enough similarity between the climate model and the real world to give 
us confidence that they capture (albeit with uncertainty) key processes known to 
be important in determining the sign and magnitude of predicted future changes. 
We can be confident that the models can provide some inference about the real 
world, as is done in, for example, successive IPCC reports. Nevertheless, we do 
recognise that there are uncertainties and that there are deficiencies common 
to all models, including the Met Office model. The whole point of the UKCP09 
probabilistic projections is to express the credibility of the model projections in 
terms of the probability of different outcomes. The model deficiencies are taken 
account of in the probability or credibility limits of the probabilistic projections.

Figure A3.1: Observations of changes in 
global mean temperature, 1860–2000 
(red) compared to the simulation using 
the HadCM3 climate model driven by 
observed changes in man-made forcing 
(greenhouse gas and sulphate aerosol 
concentrations), natural forcing (solar 
radiation and volcanic aerosol) and 
including natural variability (green band). 
Decadal-scale variability and trends are 
reasonably well simulated by the model 
Stott et al. (2000).
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A3.3 Large-scale and small-scale processes and climate change

The current generation of climate models can capture the broad-scale features of 
present day climate (Figures A3.2 and A3.3) and historical climate change (Figure 
A3.1). This is particularly true for surface variables such as temperature and mean 
sea-level pressure and for those three-dimensional fields which capture the large-
scale structure of winds and temperatures throughout the atmosphere. Even for 
fields such as mean precipitation, the models are able to reproduce many of 
the large-scales features with some fidelity. These features are generated by the 
dynamical and physical processes in the model and are not prescribed.

Nevertheless, models are certainly not perfect even on large-scales, as evident in 
Figures A3.2 and A3.3 which show differences between the model ensemble mean 
fields and the observations. For example, the ensemble mean of the HadCM3 
ensemble with perturbations to atmosphere-component parameters (PPE_A1B 
— see Chapter 3) shows a clear warm bias in summer Northern Hemisphere 
continental regions (which we discuss later). In addition, there are biases which are 
common to both the perturbed physics and multi-model ensembles. Models tend 

Figure A3.2: Winter (top two rows) and 
summer averaged surface air temperature 
1961–1990 in K from observations (left 
column), absolute values from the 
multi-model ensemble (MME) mean of 
all the CMIP3 climate models and from 
the mean of the versions of HadCM3 
with perturbations made to atmospheric 
parameters (PPE_A1B middle column) and 
model ensemble mean minus observed 
mean (right column). The model fields 
are plotted only where the observational 
data exists. The multi-model ensemble 
is those models from the Third Climate 
Model Intercomparison Project (CMIP3). 
The members are not the same subset of 
models as the multi-model ensemble used 
to generate the UKCP09 PDFs, referred to 
in Chapters 1–3, which employ data from 
models coupled to simple mixed layer 
oceans.
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to produce a double ITCZ (Intertropical Convergence Zone) in the Pacific whereby 
zonally-oriented large-scale rain bands appear in both hemispheres, where in 
reality, the southern hemisphere rain band is oriented NW–SE. In addition, 
variables such as convective (shower) precipitation can be highly localised so are 
harder to model, as are fields such as surface winds. When regional factors are 
important — for example in highly mountainous regions — global models may 
find it hard to capture the small-scale details of the present day climate. Hence 
there is plenty of room for improvement in climate models and this is an extensive 
field of research, both within the Met Office Hadley Centre and internationally. 
(Further discussion of model evaluation is presented below and can also be found 
in, for example, Chapter 8 of IPCC AR4. Discussion of the mean climates of the 
regional model versions can be found in Chapter 5 of this report.)

A critical issue for prediction is how these model errors and biases affect the 
pattern and magnitude of climate change. The main drivers of climate change 
are global in nature in terms of their radiative forcing and there is a significant 
degree of commonality between models in terms of their large-scale projections 
of mean future change (Figure A3.4). The commonality is stronger in the case 

Figure A3.3: Winter (top two rows) and 
summer averaged precipitation 1961–1990 
in mm/day from observations (left 
column), from the multi-model mean of 
all the CMIP3 climate models and from 
the mean of the versions of HadCM3 
with perturbations made to atmospheric 
parameters (PPE_A1B middle column) and 
model ensemble mean minus observations 
(right column). The model fields are 
plotted only where the observational data 
exists.
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of temperature, but there are also similar patterns of response in terms of 
the mean precipitation in models. Different models all show greater warming 
over land compared to over the ocean and greater warming at high-latitudes 
in comparison with the tropics in the winter hemisphere. The latter may be 
understood in terms of simple physical reasoning: in this case, albedo feedbacks 
whereby snow or ice covered regions become exposed as the planet warms and, 
as a result, more sunlight is absorbed by the underlying surface. Other important 
feedbacks include the positive water-vapour feedback; water vapour (a potent 
natural greenhouse gas) will increase as air temperature increases. The directions 
of such feedbacks are relatively well understood but their absolute magnitude is 
still under investigation. Feedbacks from clouds represent a significant source of 
uncertainty in total global feedbacks and these may also drive variations in local 
climate changes (clouds remain one of the most-complex and most-studied of 
feedbacks under climate change). Because of these global-scale uncertainties, the 
PDFs presented in this report are (a) constructed from a relatively large number 
of ensemble members which explore uncertainties in large-scale feedbacks and 
(b) constrained by a number of observed large-scale fields; the relative likelihood 
of each model version in its ability to simulate the large-scale nature of climate 
and historical climate change is taken into account (see Chapter 3).

Looking more locally, we see similar patterns of warming in both summer and 
winter in region of the UK and NW Europe, with the multi-model ensemble 
mean showing a slightly greater ensemble mean warming than in the case of the 
perturbed physics ensemble mean. Perhaps more surprising is the similarity of the 
patterns of precipitation change in the two different ensembles, with increased 
precipitation during the winter over much of NW Europe and a drying in the 
Mediterranean region in summer. This indicates common physical mechanisms for 
the change between different models. Nevertheless, those physical mechanisms 
may act in subtly different geographical areas and with different strengths in 
different models. In the summer case, the perturbed physics ensemble drying 
extends more into the north and over the UK, whereas in the multi-model 
ensemble the line of zero mean change cuts the UK. This is why it is so important 
to include information from other climate models in UKCP09.

For some variables the response to climate change may be quite different in 
different perturbed physics or multi-model members and the resulting PDFs 
of change quite wide. We should not necessarily assume that the use of the 
multi-model ensemble in generating the PDFs provides some kind of upper-
bound uncertainty in the predictions. The existence of common errors in multi-
model and perturbed physics ensembles may, for example, impact the pattern 
or magnitude of the climate change response seen in all ensembles. There may 
be other possible formulations of models which could give rather different 
responses that could affect the level of uncertainty in the PDFs. Nevertheless, 
without any evidence of the possibility of very different climate change, the most 
defensible approach is to look to the multi-model ensembles to provide evidence 
for a discrepancy in PDFs generated from the perturbed physics ensembles (see 
Chapter 3 and Annex 2 for more details). The impact of model formulation (e.g. 
horizontal and vertical resolution) on the magnitudes and patterns of climate 
change is a very active area of research.

In general, regional aspects of climate change may be influenced by local 
regional processes such as the enhancement of rainfall on the windward-side 
of mountainous regions. Hence the use of the ensemble of regional-model 
simulations and statistical downscaling techniques in generating the PDFs 
presented here. Importantly, the regional models are driven by output from the 

Figure A3.4 (opposite): Ensemble mean 
response in the years 2071–2100 minus 
the mean climate averaged 1961–1990 
under SRES scenario A1B from two 
different types of global climate model 
ensembles. Left panels from the CMIP3 
multi-model ensemble, right panels 
from the 17-member HadCM3 ensemble 
(PPE_A1B in Chapter 3) with perturbed 
atmospheric parameters. The fields are 
only shaded when greater than 66% 
of the ensemble members agree on the 
sign of the projected change. Top row, 
winter (DJF), surface air temperature. 
Second row, summer (JJA) surface air 
temperature. Third row, DJF precipitation. 
Fourth row, JJA precipitation. A similar 
figure appears as Figure  TS.30 in the IPCC 
AR4 Technical Summary.
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global models that represent the large-scale pattern of climate change. Hence 
there is an internal consistency in the information which is derived completely 
from model output.

A3.4 The ability of models to represent modes of variability

A3.4.1 The North Atlantic Oscillation
Modes of variability like the NAO do occur spontaneously in climate models. 
Causes of long-term variations in the NAO are still under investigation.

The North Atlantic Oscillation (NAO) is one of the dominant modes of variability 
of Atlantic-European winter climate. It can be broadly described as a see-saw of 
atmospheric pressure between the Azores and Iceland and is sometimes discussed 
in relation to a hemispheric mode of variability, the Northern Annular Mode 
(NAM), with the see-saw between polar and mid-latitude bands of air. When 
the NAO is positive, winters in the UK tend to be milder and wetter. When it is 
negative, winters tend to be colder and drier. HadCM3 does simulate the broad 
spatial and temporal characteristics of NAO variability reasonably well and is 
certainly competitive when compared to other climate models (e.g. Stephenson 
et al. 2006).

Of particular research interest has been the long term trends in the NAO observed 
in recent times (see Figure A3.5) that cannot be easily explained in terms of long-
term natural internal variability in climate models (e.g. Gillett, 2005). There are 
conflicting theories about the causes of these trends in the climate literature. 
They may be related to variations in sea-surface temperatures in the N. Atlantic 
or remote ocean basins (Rodwell et al. 1999; Hoerling et al. 2001; Sutton and 
Hodson 2007), or be related to trends and variability in stratospheric winds 
(Scaife et al. 2005) or both. They might even be explained in terms of chance 
year-to-year fluctuations which are in no way predictable. None of the models 
in the 17-member ensemble of HadCM3 with perturbed atmosphere parameters 
(PPE_A1B) capture the exact observed low-frequency temporal behaviour of the 
NAO — no free-running climate model does. Yet the general level of variability in 
each of the members is similar to that seen in the observations and one member 
(highlighted in red in Figure A3.5) does capture some low-frequency trends in 
the period around 1950–2000 which are reminiscent of those seen in the real 
world (quite by chance of course). 

None of the perturbed physics ensemble members show significant NAO trends 
into the future. Some sub-sets of the multi-model archive have been shown 
to produce positive NAO trends (e.g. Osborn et al. 2004) and the recent IPCC 

Figure A3.5: Gibraltar minus Iceland mean 
sea level pressure difference averaged in 
the winter seasons from observed (thick 
dotted line) and from the 17 member 
ensemble of HadCM3 with perturbations 
to parameters in the atmospheric 
(PPE_A1B in Chapter 3) component of 
the model (grey lines). A low-pass filter 
has been applied to remove year-to-year 
variability and highlight low-frequency 
NAO behaviour. An ensemble member 
with similar magnitude variability to 
that observed (occurring by chance) is 
highlighted in red.1900 1950 2000 2050
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assessment concluded that the most recent models showed a trend towards 
positive NAM and NAO, but with considerable spread among models in the 
latter. Clearly there is some uncertainty and possible dependence on what index 
is used to define the NAO/NAM and which models are examined. A corollary of 
this is that the coherent aspects of future climate changes in winter in the N. 
Atlantic sector (e.g. Figure A3.4) thus appear to be largely driven in the models 
by the direct response to the radiative forcing from greenhouse gas increases, 
rather than any response involving coherent changes in the NAO. This radiative 
response is the dominant response and no models show changes in dynamical 
modes of variability such as the NAO which might oppose or severely alter this 
response.

A3.4.2 Storm tracks and blocking
HadCM3 does simulate the main hemispheric pattern of storm tracks and some 
aspects of Atlantic-European blocking. 

(a) Storm tracks
Greeves et al. (2007) show that HadCM3 does capture the main large-scale 
features of the northern hemisphere circulation, with storm activity concentrated 
in regions of the Pacific, Atlantic and Mediterranean. These storm tracks are not 
prescribed in the model but rather evolve as a consequence of the location of 
mountainous regions, the land–sea contrast and because of preferred regions 
for development of weather systems. The simulation of storm tracks shows only 
a modest improvement when model resolution is doubled for example, so the 
need to quantify uncertainties, achieved in UKCP09 through the use of ensemble 
simulations of HadCM3 and other contemporary climate models, is unlikely to 
be removed in the foreseeable future; the computing cost of a high resolution 
model would have prohibited the use of large ensemble simulations for UKCP09. 
However, some benefits of higher resolution are achieved in the regional-model 
downscaling step. A notable generic feature of regional models is their ability to 
generate many more weather features such as troughs and frontal waves.

It is possible to investigate the behaviour of storms and storm-tracks in climate 
models using a variety of model outputs. Sophisticated tracking techniques which 
identify individual cyclones and anticyclones and produce summary statistics 
of their behaviour may be contrasted with more simple approaches which use 
time-filtered daily mean-sea-level-pressure fields. Care should be taken in the 
interpretation as different analysis techniques can sometimes produce subtly 
different results.

Here we use a simple analysis of mean-sea-level-pressure anomalies, time filtered 
to retain 2–6 day variability, from the 17-member HadCM3 ensemble with 
Medium emissions and with perturbations to atmospheric parameters, which are 
used to drive the regional model simulations. For UK winter, the ensemble mean 
track of cyclone activity in the models (blue squares in Figure A3.6) is somewhat 
to the south of its observed position (as given in the ECMWF ERA40 re-analysis 
of observations). Nevertheless, the track position is closer to that observed than 
many of the equivalent simulations performed with the CMIP3 models red 
squares. In addition, the Met Office perturbed physics ensemble has a tighter 
cluster of storm track strength which, for each member, is only slightly weaker 
(~10%) than observed. The same southerly track extent is true of the position in 
other seasons in the ensemble mean, but in those cases the cyclone count is down 
by around 5–20% (figure not shown). The perturbations to HadCM3 do result in 
some spread in the position and intensity of the cyclone track between model 
versions, with ensemble members between 0 and 6 degrees too far south and 




