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i.	 Produce a large Monte Carlo sample (106 members) of the parameter space 
of surface and atmospheric processes in HadSM3, using our emulator (Section 
3.2.3) to estimate multiannual mean global fields of the set of the recent 
climate variables identified as observational constraints in Section 3.2.9, 
and of the equilibrium response to doubled CO2 for the set of variables for 
which future projections are required (Table 1.1), at UK land and marine 
points in our global climate model (downscaling is handled later in step 
(vi)). Uncertainties in emulated model output, observational errors and 
discrepancy are accounted for by sampling from their specified distributions, 
obtained respectively from calibration of the emulator against climate 
model simulations, estimates of observational errors statistics derived either 
from the use of alternative datasets or (where available) formal published 
estimates (Section 3.2.9), and the use of HadSM3 to predict the results of an 
ensemble of alternative climate models (see Section 3.2.8). At this stage, an 
interim weight is calculated for each Monte Carlo sample member, based 
on the recent climate observables but neglecting the Braganza et al. (2003) 
indices of historical temperature change.

ii.	 Sub-sample 25,000 of the 106 members. This is necessary because step (iii) 
below involves running a simple climate model, which places computational 
restrictions on the sample size. In selecting the 25,000 members, we use the 
interim weights from (i) to ensure that different parts of parameter space 
are sampled with a likelihood approximately consistent with their likely final 
contribution to the final probabilistic projections. 

iii.	 Obtain realisations of time-dependent climate changes for the 21st century 
(such as those shown in Figure 3.2) by applying our timescaling technique 
to each of the 25,000 members from (ii). This is done by forcing our simple 
climate model from 1860 to 2100 with time series of historical and future 
forcing agents, using emulated values of regional equilibrium responses and 
land and ocean climate sensitivities (see Section 3.2.4), and sampling values 
of timescaling error, ocean heat uptake, carbon cycle feedback and sulphate 
aerosol forcing from the distributions described in Sections 3.2.4 and 3.2.6. 
Calculate the final weight to be assigned to each point in parameter space, 
given by the emulated values of present-day climate observables from step 
(i), plus the Braganza et al. (2003) indices measuring changes in surface 
temperature patterns for the period 1970–1999 relative to 1910–1939 (see 
Section 3.2.9).

iv.	 Sub-sample the 25,000 points according to the ratio of the final weights 
from (iii) to the interim weights from (i). This produces a final sample of 
10,000 points which can be treated as a set of individual estimates of equal 
likelihood, based on the final weights. This further restriction of the sample 
size is done in order to provide a dataset which can be processed by users 
without placing an excessive burden on their data processing facilities. 

v.	 Ideally, step (iv) would provide, for relevant GCM grid boxes, 10,000 samples 
of the joint variations between all the future variables of interest, at all 
times of the year (see Table 1.1), for all future periods of interest (Figure 1.3). 
However, such a large joint calculation is not computationally feasible, so 
the data are split into smaller batches. Each of the five GCM land boxes and 
nine marine boxes is treated separately, in two distinct batches containing 
different subsets of the required variables, making 28 batches in all. For a 
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given grid box, the first batch includes all variables relating to temperature 
and precipitation in Table 1.1, and the additional variables required as input 
to the UKCP09 weather generator (with the exception of the correlation 
between successive daily precipitation amounts), for all times of the year and 
all future periods. The second batch covers the remaining variables. Within 
a given batch, the sampled values for different variables, months/seasons 
and future periods include a fully consistent treatment of covariances 
between both the best estimate values of the variables (driven by variations 
in the various climate and simple model parameters controlling the relevant 
physical and biogeochemical processes), and between their sampled errors. 
Many of these errors are actually assumed independent of one another (e.g. 
we assume no relationship between emulation errors, timescaling errors, 
observational errors or discrepancy values), however we do account for 
covariances between emulation errors for different variables, months (or 
seasons) and locations in parameter space, and between timescaling errors 
for different variables for a given month/season and future period. Data 
in different batches (e.g. projections of a given variable for a given month 
and future period, but at different GCM boxes), will account for physically-
driven covariances between the variables, but not for the statistical error 
covariances identified above. The implications of handling variables from 
separate batches are discussed further in the UKCP09 User Guidance.

vi.	 Sampled climate changes for a given batch are then converted into 10,000 
equiprobable Monte Carlo estimates for UKCP09 target locations (i.e.  
25 km squares or aggregated regions, see Figure 1.2) using our downscaling 
relationships, sampling values for the regression coefficients and residuals 
assuming Gaussian distributions with means and variances determined from 
the fitting procedure described in Section 3.2.11. Joint probabilities can 
be estimated from these downscaled samples for changes in two or more 
variables in the same batch.

vii.	 Marginal posterior probabilities for individual climate variables for each 
UKCP09 target location and period are generated by a slightly different 
procedure. In this case, we start from probabilistic projections of the relevant 
variable from the appropriate GCM grid box, adjusting values associated 
with different probability levels of the cumulative distribution function 
(CDF) according to the slope and uncertainty in the appropriate downscaling 
relationship, and hence generating an updated CDF appropriate to the 
required 25 km grid box or administrative region. This procedure provides 
a robust numerical approximation to a full (but unfeasible) integration over 
the entire model parameter space. 

viii.	The sampled data were not considered robust either below the 1% 
probability level or above the 99% probability level, so we prevented the 
sampled data from going outside that range. That is, for a given combination 
of variable, location, time of year, future period and emission scenario, the 
values of sampled data below the 1% probability level are set to the value of 
the 1% probability level from the corresponding CDF, and values above the 
99% probability level are set to the value of the 99% probability level. Three 
variables used by the weather generator (variance and skewness of daily 
precipitation and variance of daily temperature) are higher order statistics 
than the other variables, and were considered less robust; for these three 
variables we set the limits at the 5 and 95% probability levels.
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3.2.13 Probabilistic projections for the SRES B1 and A1FI emissions 
scenarios
The ensemble simulations of Sections 3.2.4 and 3.2.5 are all driven by future 
emissions and/or concentrations of anthropogenic forcing agents consistent with 
the SRES A1B emissions scenario. In order to provide probabilistic projections for 
the B1 and A1FI scenarios, the 17 member PPE_A1B ensemble was re-run using 
appropriate time-dependent concentrations of greenhouse gases, and emissions 
of sulphate aerosol precursors. These ensembles were used to re-calibrate key 
timescaling statistics (specifically the correction and error terms) for the B1 
and A1FI scenarios by comparing the HadCM3 simulations against timescaled 
estimates derived from corresponding HadSM3 simulations in conjunction with 
our simple climate model, as described in Section 3.2.4. 

Probabilistic projections were then obtained by following the procedure of 
Section 3.2.12, specifying time series of forcing agents for B1 or A1FI in the simple 
climate model in step (iii). Apart from the timescaling aspects referred to above, 
all sources of uncertainty were all assumed to be the same as those specified for 
the A1B scenario. Some of these sources would clearly be independent of future 
emissions, such as emulation errors derived from our HadSM3 simulations, or the 
discrepancy attached to simulations of historical observables. The discrepancy for 
future projection variables is assumed independent of future emissions as a basic 
constraint of our experimental design. Further uncertainties could be specified 
separately for different emissions scenarios in principle, but were not in practice. 
These include global mean sulphate aerosol forcing, ocean heat uptake efficiency 
and carbon cycle feedback strengths, and regional downscaling relationships, for 
which resources to run additional ensemble simulations for B1 and A1FI were not 
available. 

These assumptions are generally likely to be reasonable if global feedback 
strengths, and regional patterns of change per unit global warming (e.g. Mitchell, 
2003), can be assumed independent of the chosen emissions scenario. Results 
from the latest IPCC assessment suggest that this is a reasonable assumption to 
leading order (e.g. Figure 10.9 of Meehl et al. 2007); however, our assumptions 
render the results for SRES B1 and A1FI somewhat less robust than those for 
A1B, particularly for projections in the latter decades of the 21st century, when 
the applied forcing and simulated response for different SRES scenarios diverges 
significantly (Figure 2.14). 

3.3 Interpretation of UKCP09 probabilistic climate projections 

UKCP09 provides a state-of-the-art basis for assessing the risk of different 
outcomes consistent with current climate modelling capability and understanding. 
However it is not yet possible to provide probabilistic projections for all variables 
of interest. As knowledge improves in future, the projections are liable to change.

In this chapter we have described our methodology for probabilistic projection 
in UKCP09, based on perturbed physics ensembles of climate model simulations 
specifically designed to sample uncertainties in key physical and biogeochemical 
processes. This is done by perturbing poorly constrained parameters in a number 
of configurations of one particular climate model (HadCM3), to which is added 
a strategy for the sampling of structural modelling uncertainties (discrepancy, 
explained in Section 3.2.8) by using results from one of our perturbed physics 
ensembles to predict the results of an alternative ensemble of climate change 
simulations from models developed at different climate research institutes.
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Our ensemble projections are converted into probabilistic projections using 
a Bayesian statistical framework developed to support inference of future 
information about real systems from complex but imperfect models (Goldstein 
and Rougier, 2004; Rougier, 2007). This process allows our projections to be 
constrained by a set of observations of past climate (Section 3.2.9), and also involves 
the use of expert judgements, for example in specifying prior distributions for 
uncertain model parameters. The probabilities which emerge from this approach 
represent the relative credibility of a family of different possible outcomes, taking 
into account our understanding of physics, chemistry, biology, observational 
evidence, and expert judgement. Climate change probabilities cannot be verified 
in the same way as (say) probabilistic weather forecasts, because we do not 
have the opportunity to test our projections over many historical forecast cycles. 
Rather, they should be interpreted as an attempt to quantify the relative risk 
of different future outcomes, consistent with climate modelling technology, 
physical understanding and observational evidence currently available. 

The credibility of the UKCP09 projections should be judged, therefore, on 
whether the underlying experimental design captures the leading known 
drivers of uncertainty, and on the extent to which the projections are robust 
to reasonable variations in the experimental choices and assumptions. These 
have been highlighted throughout the chapter, and Annex 2 contains a number 
of tests of key assumptions, including our expert prior distributions for model 
parameters, our method of estimating discrepancy, and our method of selecting 
the appropriate level of detail in the observational information used to constrain 
our projections (specifically the number of eigenvectors retained in our analysis, 
as explained in Section 3.2.9). This Annex also tests our results by comparing 
them against an approach based on a different philosophy, in which probabilities 
of future change are sought using a method designed to maximize the role of 
the constraining observations, and to be as independent as possible from the set 
of climate models used (e.g. Allen et al. 2000; Stott et al. 2006a).

Some of our experimental choices are not yet testable, and arise from unavoidable 
limitations imposed by limited scientific understanding or modelling capability. 
For example, while we believe that our experimental design caters for the 
leading known drivers of uncertainty in 21st century climate change (in particular 
physical atmospheric feedback processes, and carbon cycle feedbacks), there are 
other possible forcing agents (e.g. non-sulphate aerosol species), or feedbacks 
(e.g. through methane cycle processes) which are not included in UKCP09. We 
have no positive evidence that such factors would, if included, provide sources 
of uncertainty comparable with those included in UKCP09 (at least for projection 
time scales of a century or less), but this remains an issue for future research. 

Further assumptions are imposed by limitations in computational resource. In 
particular, we sample uncertainties in surface and atmospheric physical processes 
more comprehensively than uncertainties in other earth system modules (ocean, 
sulphur cycle, carbon cycle), because it was not feasible to run the large ensembles 
of time-dependent climate change simulations which would be required. Thus 
we characterise uncertainties in these modules using simpler methods, applying 
the greater sophistication of our Bayesian calculations only to the treatment of 
surface and atmospheric uncertainties. In the case of the carbon cycle, however, 
we do make a simple attempt to account for variations in historical simulation 
skill between different ensemble members, and to account for structural 
modelling uncertainties by including results from a multi-model ensemble of 
projections (Friedlingstein et al. 2006), in addition to those from our perturbed 
physics ensemble.
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We also assume that non-linear interactions between uncertainties in different 
components of the Earth System are important at the global scale, but not at the 
regional scale, because our finite computing resources were not able to support 
ensembles of climate projections with a comprehensive Earth System Model (ESM) 
in which uncertain processes in different components were simultaneously co-
varied. Such an experiment is now in progress with HadCM3C, but UKCP09 relies 
on the assumption that regional interactions between earth system components 
are likely to be small compared with uncertainties arising when each component 
is sampled in isolation. 

It is important that such caveats are clearly recognized. However, we believe that 
the UKCP09 methodology represents the most systematic and comprehensive 
attempt yet to provide climate projections which combine the effects of key sources 
of uncertainty, are constrained by a set of observational metrics representative of 
widely-accepted tests of climate model performance, and provide a state-of-the-
art basis for the assessment of risk, within limits of feasibility imposed by current 
modelling capability and computing facilities.

Another key point is that we cannot make a universal assumption that probabilistic 
predictions can be provided for all variables that users might be interested in. As 
discussed in Section 3.2.10, our method is based on the assumption that robust 
probabilities cannot be inferred from small multi-model ensembles in isolation 
(see Section 3.1), and that larger perturbed physics ensembles can be used as an 
alternative means of sampling key process uncertainties to first order. If this is 
the case, then we would expect that: (a) the spread of changes simulated by the 
12 member multi-model ensemble used in UKCP09 should lie more or less within 
that simulated by our corresponding perturbed physics ensemble; (b) even if (a) is 
satisfied, the discrepancy term calculated from the multi-model ensemble results 
should supply a modest (albeit non-trivial) component to the total uncertainty 
reflected in our probability distributions. With the exception of the latent heat 
flux variable (see Section 3.2.10), we find that criteria (a) and (b) are satisfied for 
the UKCP09 projection variables. 

However, there were two further variables for which probabilities could not be 
provided, for different reasons. In the case of soil moisture content, the issue 
was that different models define this variable in slightly different ways, so it 
was not possible to calculate a discrepancy term by comparing the perturbed 
physics results against simulations of a consistently defined quantity in the 
multi-model ensemble. Secondly, it was not possible to provide probabilistic 
projections of fractional changes in snowfall. This is because the logarithmic 
transformation applied prior to our statistical calculations (in order to avoid 
the possibility of projecting reductions below the absolute bound of –100% 
— see Section 3.2.3) sometimes resulted in distributions with a highly skewed 
upper tail. This suggested a non-negligible probability for substantial increases 
in snowfall, not supported by the climate model results. This arose because the 
logarithm of snowfall varies rapidly at small snowfall values, and small values 
are often simulated in the climate model runs. This in turn means that statistical 
uncertainties (variances resulting from emulation error, downscaling error and 
timescaling error) calculated in the transformed variable tend to have large 
values. However our method does not account for changes in this variance as 
a function of the value of the projection variable, so these large variances are 
then assumed to apply to all projected values, leading to an unrealistic inflation 
of the upper tail of the attempted probabilistic projection. Changes in snowfall 
derived from our 11 member regional climate model ensemble projections are 
discussed in Chapter 4, noting that these simulations sample only a subset of 
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the uncertainties considered in the fuller probabilistic analysis applied to other 
variables. 

For users, an important question concerns how climate projections will change in 
future. Should planners make decisions now, based on estimates showing a wide 
range of possible changes, or should they delay in the hope that more precise 
information will be available in (say) 10 yr time? On the one hand, modellers 
have striven successfully to improve their models over the past decade or so (e.g. 
Reichler and Kim, 2008), yet the range of future global projections in the IPCC 
AR4 (Meehl et al. 2007) was not significantly narrower than in the previous IPCC 
assessment, and the range of projected changes over the UK has certainly not 
narrowed. On the other hand, some of the errors in climate models tend to be 
systematic across different models, partly due to shared features such as limited 
resolution. Examples, including a tendency to underestimate the frequency of 
blocking anticyclones over Europe in winter, are given in Annex 3. The presence 
of common errors gives rise to the possibility that ensemble climate projection 
exercises of the future might give different results to those deriving from the 
current generation of models, at least for some aspects of climate.

In practice, therefore, the prospects for better projections will depend on which 
variables or which future periods users are most interested in. For example, 
uncertainties in the UKCP09 projections are substantial even for a couple of 
decades ahead (Sections 4.4.2 and 4.5), due to the significant influence of internal 
variability at regional scales, and then grow larger through the 21st century due 
to the additional influence of uncertain climate change feedbacks (Box 2.1). 
Prospects for reducing uncertainties in near-term changes are likely to rest mainly 
on constraining projections of internal variability by initializing climate models 
with ocean observations (Smith et al. 2007; Keenlyside et al. 2008), and through 
improvements in the ability of models to simulate regional modes of variability. 
For example, increased horizontal or vertical resolution might lead to better 
simulation of features such as the North Atlantic storm track, or the coupling 
between sea surface temperature anomalies and atmospheric circulation 
anomalies. At longer lead times progress would also depend on improvements 
in our ability to represent thermodynamic climate feedbacks and carbon cycle 
processes, and their complex interactions. An active dialogue between users 
and climate research scientists will therefore be crucial, in order to ensure that 
adaptation decisions are taken on the basis of up-to-date information concerning 
the potential for emerging research to update projections currently available, 
such as UKCP09.

As mentioned above, improvements in climate models are one potential route to 
improved projections in future. By improved, we mean both more comprehensive 
sampling of climate feedbacks (through the use of comprehensive ESMs), and 
smaller uncertainties through the development of models with higher resolution 
and better representations of sub-grid scale processes. Initialisation of climate 
models with observations (also mentioned above) has potential to improve 
projections of near-term climate over the next decade or so, and possibly longer. 
Uncertainties could also be reduced by developments in experimental design, 
subject to available computing resources. For example, future exercises of this 
type could potentially be based entirely on simulations in which the atmosphere 
model is coupled to a full dynamical ocean component, rather than a simple 
mixed layer ocean (see Section 3.2.3). This would remove the need for scaling 
approaches to infer time-dependent climate changes from equilibrium changes, 
and hence narrow the probability distributions significantly, as our timescaling 
procedure is responsible for a significant component of the total uncertainty 



85

UK Climate Projections science report: Climate change projections —  Chapter 3

captured in our probabilities (see Annex 2). It would also allow a wider range of 
observational metrics to be used in constraining the projections.

In summary, the UKCP09 projections should be seen as a comprehensive summary 
of possible climate futures consistent with understanding, models and resources 
available at present, but users should be aware that the projections could change 
in future, as the basis for climate prediction evolves over time. 
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